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1 Lecture 1: Vector Spaces

1.1 Groups
Definition (Group). A group (G, ·) is a set G equipped with · : G×G→ G

(a, b) 7→ a · b ∈ G

Such that the following holds

(1) a(bc) = (ab)c for all a, b, c ∈ G.

(2) ∃ an element e ∈ G satisfying
e · a = a · e = a

for all a ∈ G.

(3) ∀a ∈ G, ∃b ∈ G such that ab = ba = e and b is called the multiplicative inverse of a.

Example. (Z,+) is a group. (Q,+) is a group. (R,+) is a group. (R\Q,+) is not a group (0 is not
in the set). (R,×) is not a group (0 does not have a multiplicative inverse). (R\{0},×) is a group.

Definition (Abelian Group). A group G is called an abelian group if ab = ba for all a, b ∈ G.
All the groups in the above example are abelian groups.

Example. {e} (e is the identity) is called the trivial group. It has one element, which is the inverse
of itself.

Example. Z2 = {0, 1}. Our operation is defined as follows:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

Definition (Field). A field (F,+, ·) is a set F equipped with + : G×G→ G and · : G×G→ G with
a+ b ∈ G and a · b ∈ G for all a, b ∈ G such that the following holds:

(1) F is an abelian group under “+” (we denote by 0 the additive identity).

(2) F\{0} is an abelian group under “ ·” (we denote by 1 the multiplicative identity).

(3) For any three elements a, b, c ∈ F,
a · (b+ c) = ab+ ac

Example. (R,+,×) is a field. (Q,+,×) is a field.

Example. Z2 = {0, 1}. We can now write the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Since both tables are symmetric over the diagonal, the groups are both Abelian. Combined with the
distributive property for Z, this is a field.
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1.2 Complex Numbers
Definition (Complex Number). A complex number is a pair (a, b) ∈ R×R of real numbers. We can

also denote a+ bi = (a, b).
Definition (Complex Addition). Consider a+ bi and c+ di.

(a, b) + (c, d) = a+ bi+ c+ di = (a+ c) + (b+ d)i = (a+ c, b+ d)

Definition (Complex Multiplication). Consider a+ bi and c+ di.

(a, b) · (c, d) = (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i = (ac− bd, ad+ bc)

In particular, i · i =
√
−1.

Example. (C,+) is an abelian group with the identity 0 = (0, 0). (C\{0}, ·) is an abelian group with
the identity 1 = (1, 0) and the inverse exists since it is simply the result of solving the system of linear
equations resulting when you solve (a+ bi)(c+ di) = 1. By distributivity for R, (C,+, ·) is a field.

1.3 Vector Spaces
Definition (Vector Space). A triple (V,+, ·) and a field F are called a vector space where + is called

addition and · is called scalar multiplication if

(A) (V,+) is an Abelian group.

(M1) 1 · u = u for all u ∈ V .

(M2) a(bu) = (ab)u for all a, b in F and u in V .

(M3) (a+ b) · u = a · u+ b · u for all a, b ∈ F and u ∈ V .

Remark. Scalar multiplication is · : F × V → V . 1 is the multiplicative identity in F. Also, notice
that theres addition in F and addition in (V,+, ·) which are different and multiplication in the field
and scalar multiplication which are both different but we are often lazy and just notate them with the
same symbol.

Example. Fn = {(a1, . . . , an) | aj ∈ F 1 ≤ j ≤ n}

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

λ(a1, . . . , an) = (λa1, . . . , λan)

for all λ ∈ F and (a1, . . . , an) ∈ Fn. Fn is a vector space over F.

Example. C is a vector space over R.
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2 Lecture 2: Subspaces

Lemma. Let G be a group. Then

(1) e is unique

(2) any element a has a unique inverse in G.

Proof.

(1)

Suppose e1 and e2 are two distinct elements. Then

e2 = e1 · e2 = e2 · e1 = e1

(2)

Suppose a has two inverses v and w.

w = we = w(av) = (wa)v = ev = v

■

Corollary. Let V be a vector space over F.

(1) 0 · U = ∅ where 0 ∈ F and ∅ ∈ V for all u ∈ V .

(2) λ∅ = ∅ for all λ ∈ F.

Proof.

(1)

O · u = (0 + 0) · u = 0 · u+ 0 · u

(−0u) + (0u) = (−0u) + (0u) + (0u)

∅ = 0 · u

■

(2)

Same idea

Corollary. (−1) · u = −u for all u ∈ V .

Example. Fn = {(x1, . . . , xn) | xj ∈ F 1 ≤ j ≤ n}

(x1, . . . , xn) + (y1, . . . yn) = (x1 + y1, . . . , xn + yn)

λ(x1, . . . , xn) = (λx1, . . . , λxn)

with λ ∈ F.
F∞ = {(x1, x2, . . .) | xj ∈ F, j ∈ Z+}

is a vector space.
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Example. Given a set S, a field F, define set FS , all functions f : S → F,

(f + g)(x) = f(x) + g(x)

(λf)(x) = λ · f(X)

Example. (F2)
S where S = {0, 1, . . . , n − 1} has 2n elements. (F3)

S where S = {0, 1, . . . , n − 1}
has 3n elements.

Remark. F2 is just a field with two elements.

Definition (Subspace). Let V be a vector space over F. A subset W ⊆ V is a subspace if W is a
vector space over F .

Remark. The above might sound confusing, sometimes when we refer to the vector space we just
refer to its set and not its operations for ease.

Example. W = {(x1, x2, 0) | x1, x2 ∈ F}, W is a subspace of F3 because

(x1, x2, 0) + (y1, y2, 0) = (x1 + y1, x2 + y2, 0) ∈W

(x1, x2, 0) = (λx1, λx2, 0) ∈W

Proposition. Let V be a vector space over F. A subset W ̸= ∅ ⊆ V is a subspace if and only if

(1) ∅ ∈W

(2) u+ v ∈W for all u and v in W .

(3) λu ∈W for all λ in F and u in W .

Example. Define R∞ = {(x1, . . . , xn, . . .) | xj ∈ R, j ∈ Z>0}

l2(R) = {(x1, . . . , xn, . . .) |
∞∑
j=1

|xj |2 <∞}

We can check that l2(R) is a subspace:

• ∅ = (0, . . . , 0, . . .) ∈ l2(R)

• λ(x1, . . . , xn, . . .) = (λx1, . . . , λxn, . . .) since

∞∑
j=1

(λxj)
2 = λ2

∞∑
j=1

(xj)
2 <∞

• Given (x1, . . . , xn, . . .) ∈ l2(R) and y1, . . . , yn, . . .) ∈ l2(R),

∞∑
j=1

(xj + yj)
2 ≤

∞∑
j=1

(2x2j + 2y2j ) = 2

∞∑
j=1

x2j + 2

∞∑
j=1

y2j <∞
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Example. R3, N all of the solutions (x1, x2, x3) of a11x1 + a12x2 + a13x3 = 0
a21x1 + a22x2 + a23x3 = 0
a31x1 + a32x2 + a33x3 = 0

N is a subspace of R3.

Proposition. V is a vector space, and suppose U and W are subspaces of V .

• U ∪W ̸= ∅ is a subspace of V

• If U and W do not contain each other, U ∪W is not a subspace.

Remark. The union is not a linear operation because it doesn’t preserve the linear structure of the
space.

Question: Given subspaces U and W of V , construct the smallest subspace that contains U ∪W .

Remark. All linear combinations.

Definition. Let U and W be subsets of V . Then U +W = {u+ w | u ∈ U,w ∈W}.

Proposition. U and W are subspaces of V . Then U +W is the smallest subspace that contains
U ∪W .

Proof.
Notice that U ⊆ U +W since 0 ∈W , and W ⊆ U +W since 0 ∈ U . Thus, U ∪W ⊆ U +W .
For all a+ b ∈ U +W and c+ d in U +W ,

(a+ b) + (c+ d) = (a+ c) + (b+ d) ∈ U +W

(a+ b ∈ U +W ⇒ λ(a+ b) = λa+ λB ∈ U +W

Let Z be any arbitrary subspace of V containing U ∩W . Then U +W ⊆ Z.
For all u ∈ U and w ∈W , u,w ∈ U ∪W ⊆ Z, so u+ w ∈ Z. Thus, U +W ⊆ Z. ■

Example.
U = {(x, 2x, y, 2y) ∈ F4 | x, y ∈ F}

V = {x, 2x, y, y) ∈ F4 | x, y ∈ F}

U + V = {x, 2x, y, z) ∈ F4 | x, y, z ∈ F}
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3 Precept 1: Historical Motivation to Linear Algebra

3.1 Introduction to Linear Systems
Goal of Linear Algebra: Develop systematic methods to solving systems of linear equations.

Example. 5 cows and 2 sheep cost $10. 2 cows and 5 sheep $8. How much does 1 cow or 1 sheep cost?

Solution. Let x be the cost of a cow and y be the cost of a sheep.

5x+ 2y = 10

2x+ 5y = 8

Dividing the first row by 5, subtracting two of the first row from the second row to eliminate x, and
multiplying the second equation by 5

21 we get

x+
2

5
y = 2

y =
20

21

which then lets us get x =
34

21
.

Today, we will attempt to create an algorithm to solving systems of linear equations. We have two
operations with equations:

• Multiply a row by a nonzero scalar

• Add rows

• Swap rows

Geometrically, 5x + 2y = 10 and 2x + 5y = 8 are lines (or similar figures), which is why its called
linear algebra. Here, we are working with the real numbers, so F = R.

Harder Example.

x+ y − z = −2
3x− 5y + 13z = 18

x− 2y + 5z = k

Elimination on this matrix yields

x+ z = 1

y − 2z = −3
0 = k − 7

so k must be 7 and since we can plug in any real number for z, we have infinitely many solutions.
There are three possible number of solutions that a system of linear equations can have:

• 0

• 1

• infinitely many

Remark. It’s important to remember that we cannot divide by zero. In generic fields that are not the
real numbers, we have to be more careful about this.
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Example. When does {(x, y, z) | ax + by + cz = k} ⊆ F3 form a subspace? When k = 0 because
then it will pass through the origin.

3.2 Matrices, Vectors, and Gauss
Jordan Elimination

Idea: turn this process into an algorithm.

Example.

4x1 + 3x2 + 2x3 − x4 = 4

5x1 + 4x2 + 3x3 − x4 = 4

−2x1 − 2x2 − x3 + 2x4 = −3
11x1 + 6x2 + 4x3 + x4 = 11

we encode this into a data structure.

Definition (Matrix). An n×m matrix over a field F is a rectangular array

A =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

. . .
...

an1 . . . anm


with aij ∈ F for all i and j. Matrices A and B are equal when their size and entries are all the same.
We also have special types of matrices:

• If n = m, A is a square matrix

• If A is square and aij = 0 whenever i ̸= j, A is a diagonal matrix

• If aij = 0 whenever i > j, A is upper triangular

• If aij = 0 whenever i < j A is lower triangular

• If aij = 0 for all i and j, A is a zero matrix

Example.

x+ y − 2z = 5

2x+ 3y + 4z = 2

We turn this into a matrix of coefficients: the coefficient matrix.[
1 1 −2
2 3 4

]
and we can make this into an augmented matrix with the other sides of the equation:[

1 1 −2 5
2 3 4 2

]
We can now do the same operations that we did on regular matrices to augmented matrices to solve
systems. We get: [

1 0 −10 13
0 1 8 −8

]
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The reasons that this matrix is so nice are that one, the leftmost nonzero entries are 1, the leftmost
nonzero entries are alone in their columns, and the leftmost nonzero entries form a staircase.
The solutions to this matrix are: 

13 + 10t
−8− 8t

t

 ∈ R3

∣∣∣∣∣∣ t ∈ R


An algorithm for solving linear equations is called Gauss-Jordan elimination. The idea is that we

work equation by equation top to bottom. Suppose you’ve dont all previous equations and you get to
the ith equation:

cxj + . . . = b

where c is nonzero. We divide by c, to make the row

xj + . . . =
b

c

Finally, we eliminate xj from all other equations by subtracting multiples of this row. Finally, go to
the next equation. The algorithm stops if either you get zero = nonzero, a contradiction, or you get a
consistent system and rearrange the equations to get the staircase shape.

On the matrix side, we call these steps “elementary row operations”. They are:

1. Divide a row by a nonzero scalar

2. Subtract a multiple of one row from another one

3. Rearrange rows

If M is the augmented matrix you start with, the output of the algorithm is called rref(M) (“reduced
row echelon form”).

Definition (Reduced Row Echelon Form). A matrix is in reduced row echelon form if it satisfies the
leftmost nonzero entries are 1, the leftmost nonzero entries are alone in their columns, and the leftmost
nonzero entries form a staircase.

Example.

x+ y = 1

2x− y = 5

3x+ 4y = 2

The associated matrix is 1 1 1
2 −1 5
3 4 2


Eliminating, we go through the following steps: (setting F = R)1 1 1

0 −3 3
0 1 −1


1 0 2
0 1 −1
0 0 0


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4 Lecture 3:
Definition. Let U1, . . . , Um ⊆ V . We define

U1 + . . .+ Um = {w1 + . . . wm | wj ∈ Uj , 1 ≤ j ≤ m}

Lemma. Let U1, . . . Um subspaces of V . Then U1 + . . .+ Um is the smallest subspace that contains
∪mj=1Uj .

Definition. Let U1, . . . , Um ∈ V

(1) λ1U1 + λ2U2 + . . .+ λmUm is called a linear combination (λi ∈ F, 1 ≤ j ≤ m).

(2) span(U1, . . . , Um) = {λ1U1 + λ2U2 + . . .+ λmUm | λi ∈ F, 1 ≤ j ≤ m}

(3) span() = {∅}

Lemma. Let U1, . . . , Um ∈ V . Then span(U1, . . . , Um) is the smallest subspace that contains
U1, . . . , Um.

Remark. span(U1, . . . , Um) =
∑m

i=1 span(Ui)

Definition.

(1) A vector space V is called finite dimensional if there exists a subset S = {V1, . . . , Vm} such that
V = span(V1, . . . , Vm).

(2) A vector space V is called infinite dimensional if it is not finite dimensional.

Example.

(1) Given a field F, a function P : F→ F, P (Z) = amZ
m+am−1z

m−1+. . .+a1z+a0, 0 ̸= am ∈ F,
aj ∈ F for all 0 ≤ j ≤ m is called a polynomial. There is a one to one correspondance from
P (Z) to (a0, a1, . . . , am).

P (F) is the space of all polynomials over F.
This is infinitely dimensional because suppose it is finitely dimensional, then the polynomial with a
degree larger than all of the degrees in the finite set that spans it is not in the span, a contradiction.

P (F) is isomorphic to the space of all tuples with finitely many elements (only the first value must be
nonzero).

(2) C[a, b] continuous functions on [a, b] f : [a, b]→ R is infinitely dimensional.

(3) R[a, b] Riemann integrable functions on [a, b] is infinintely dimensional since it is a superset of
C[a, b].

Example.
U ≡ {(x, 2x, y, 2y) ∈ F4 | x, y ∈ F}

V ≡ {(x, 2x, y, y) ∈ F4 | x, y ∈ F}

U + V = {(x, 2x, y, z) ∈ F4 | x, y, z ∈ F}

Definition (Direct Sum). U1 + . . .+ Um is a direct sum if for all w ∈ U1 + . . .+ Um, there exists a
unique representation w = w1 + . . . wm where wj ∈ Uj , for 1 ≤ j ≤ m.
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Proposition. Let U1, . . . , Um ⊆ V subspaces. Then the following are equivalent:

(1) U1 + . . .+ Um is a direct sum.

(2) If w1 + . . . wm = 0, wj ∈ Uj with 1 ≤ j ≤ m then wj = 0 for all 1 ≤ j ≤ m.

Proof of one direction.

w = w1 + . . .+ wm

wj ∈ Uj

w = ŵ1 + . . .+ ŵm

ŵj ∈ Uj

0 = (w1 − ŵ1) + . . .+ (wm − ŵm)

with (wj − ŵj) ∈ Uj for all j. Applying 2,
wj = ŵj

for all j, so the sum is a direct sum. ■

Lemma. Let U, V ∈W be subspaces. Then (1) is equivalent to (2):

(1) U + V is a direct sum

(2) U ∩ V = {0}

Proof.
First we show that (1) implies (2). Taking z ∈ U ∩ V ,

z = u ∈ U ⊆ U + V

z = v ∈ V ⊆ U + V

0 = u− v ∈ U + V

u = v = 0

so z = 0. We now show that (2) implies (1).

u+ v = 0⇒ u = v = 0

u = −v ⇒ u, v ∈ U ∩ V

By (2), u = v = 0. ■

We can use this idea to make a stronger proposition than before:

Proposition. Let U1, . . . , Um ⊆ V subspaces. Then the following are equivalent:

(1) U1 + . . .+ Um is a direct sum.

(2) If w1 + . . . wm = 0, wj ∈ Uj with 1 ≤ j ≤ m then wj = 0 for all 1 ≤ j ≤ m.

(3) Ui ∩
∑

j ̸=i Ui = {0}, 1 ≤ i ≤ m.
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Example.
U1 = {(x, x+ y, 0) ∈ F3 | x, y ∈ F}

U2 = {(0, 0, z) ∈ F3 | z ∈ F}

U3 = {0, y, y) ∈ F3 | y ∈ F}

U1 + U2 + U3 is not a direct sum since

(0, 0, 0) = (0, 1, 0) + (0, 0, 1) + (0,−1,−1)

U2 + U3 = {(0, y, z) ∈ F3 | y, z ∈ F}. Notice that

U1 ∩ (U2 + U3) ̸= {(0, 0, 0)}

Ui ∩ Uj = {(0, 0, 0)}

for all i ̸= j.

V is a finite dimensional vector space over F.
Definition. Given V1, . . . , Vm ∈ V ,

(1) They are linearly independent if λ1V1 + . . .+ λmVm = 0, λi ∈ F implies that λi = 0 for all i.

(2) They are linearly dependent if there exist scalars λ1, . . . , λm ∈ F not all zero such that λ1V1 + . . .+
λmVm = 0.

By convention, a collection of zero vectors is linearly independent.

Lemma (Linear Dependence Lemma). Suppose v1, . . . , vm are linearly dependent. Then there
exists 1 ≤ j ≤ m such that

(1) Uj ∈ span(U1, . . . , Uj−1).

(2) span(U1, . . . , Um) = span(U1, . . . , Uj−1, Uj+1, . . . , Um)

Proof.
There exist scalars λ1, . . . , λm ∈ F not all zero such that λ1U1 + . . . + λmUm = 0. Let j be the

maximal one such that λj ̸= 0. Uj = −
λ1U1 + . . .+ λj−1Uj−1

λj
∈ span(U1, . . . , Uj−1).

Proposition. V = span(w1, . . . , wm) Let u1, . . . , uk be linearly independent. Then k ≤ m.

Proof.

V = span(U1, w1, w2, . . . , wm)

By the Linear Dependence Lemma,
span(U1, w1, . . . , wm)

span(U1, U2, w1, . . . , wj−1, wj+1, . . . wm)

= span(U1, U2, {w1, . . . , wm}\{wj1 , wj2})
...

⇒ m ≥ k

Corollary. V is finite dimensional. If U ⊆ V is a subspace, then U is finite dimensional.

Proof.
If U is the zero space, we are done. Suppose U is not. Suppose U is span(v1) with v1 ∈ U ∩ V , then

we are done. Otherwise,
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5 Lecture 4: Bases & Dimension
Bases is the plural form of basis. For this course we will work with finite dimensional vector spaces,

which have finitely many vectors that can be used to generate (span) them.
Definition (Basis). If v1, v2, . . . , vm are linearly independeent, they are called a basis of span(v1, v2, . . . , vm).

Example.

(1) Pm(F) : all polynomials with degree less than or equal to m. A basis for this space is
{1, x, x2, . . . , xm}. Since for the following statement to hold for all x,

λ0 + λ1x+ . . .+ λmx
m = 0⇒ λi = 0∀i

they are linearly independent.

(2) R3 : (1, 0, 0), (0, 1, 0), (0, 0, 1) is a basis.

(3) N = {(x, y, z ∈ R3 | 2x + y + z = 0}. A basis is {(−1, 1, 1), (0,−1, 1)}. Any vector (x, y, z)
can be generated with −x(−1, 1, 1) + (x+ z)(0,−1, 1)

Lemma. Any generating list of a finite dimensional vector space can be reduced to a basis.

Proof.
V = span(v1, . . . , vm). If V = {0}, done. Assume V ̸= {0}. If v1, . . . , vm is linearly indepenent, done.

Assume v1, . . . , vm is linearly dependent. By the Linear Dependence Lemma, there exists 1 ≤ j ≤ m such
that V = span(v1, . . . , vm) = span(v1, . . . , vj−1, vj+1, . . . , vm). Repeating this step until the generating
set is linearly dependent. ■

Theorem (Existence of a basis). Let V be a finite dimensional vector space. Then, V has a basis.

Proof.
By definition, there exists a generating list that is finite, so there must be a basis. ■

Corollary. Consider a finite dimensional vector space V . Let A = {w1, . . . , wk} be a set of linearly
independent vectors in V . Then A can be extended to a basis of V .

Proof.
By the Existience of a basis theorem, V has a basis {u1, . . . , um}. Then

V = span(w1, . . . , wk, u1, . . . , um)

Recall the following theorem:

Lemma. {w1, . . . , wm} linearly dependent. Then there exists 1 ≤ j ≤ m such that

(1) wj ∈ span(w1, . . . , wj−1)

(2) span(w1, . . . , wm) = span(w1, . . . , wj−1, wj+1, . . . , wm)

Remark. I believe there’s a much simpler proof. Start with the set {w1, . . . , wk}, and suppose
span(w1, . . . , wk) ̸= V . Then ∃x ∈ V with x ̸∈ span(w1, . . . , wk). Then, add x to the set and start
again with the new set {w1, . . . , wk, x}. Suppose for contradiction that this process does not end.
Then, eventually the set will be the entire vector space. However, this one of its basis (since it is finite
dimensional) is a subset of the above set, a contradition.

14



Lemma. w1, . . . , wk−1 linearly independent. wk ̸∈ span(w1, . . . , wk−1) if and ony if w1, . . . , wk is
linearly independent.

Lemma. Let {w1, . . . , wk} be a basis of V . Then for any vector v ∈ V , there exists a unique
representation

v = λ1w1 + . . .+ λkwk

Proof.
Suppose this is not true. Then there existis two distinct represenations

v = λ1w1 + . . .+ λkwk

v = λ̂1w1 + . . .+ λ̂kwk

0 = (λ− λ̂1)w1 + . . .+ (λk − λ̂k)wk

which means λj = λ̂j for all j by linear independence. ■

Theorem. Let U be a subspace of V . Then there exists a subspace W such that V = U ⊕W . Then
we define W to be a complement of U .

Proof.
Let B = {u1, . . . , um} be a basis of U . Then by the last corollary, B can be extended to a basis

B = {u1, . . . , um, w1, . . . , wk} of V . Then, define W
def
= span(w1, . . . , wk). Then we will prove that

U ∩W = {0}. 0 ̸= v = λ1u1 + . . .+ λmum = µ1w1 + . . .+ µkwk. Since B is a basis of V ,

0 = λ1u1 + . . .+ λmum − µ1w1 − . . .− µkwk

⇒ λ1 = . . . = λm = µ1 = . . . = µk = 0

a contradiction. ■

Lemma. Any two bases of a finite dimensional space has the same length.

Proof.
Consider two bases B1 = {u1, . . . , um} and B2 = {w1, . . . , wk}. Then using the reduction lemma,

m ≥ k and k ≥ m, so m = k. ■

Definition (Dimension). Let V be a finite dimensional vector space. We define the dimension
dim(V ) = the length of nay basis of V .

Example. N = {(x1, x2, x3) ∈ R3 : 2x1 + x2 + x3 = 0} has dim(N) = 2.

Consider y(t) such that y′′′(t) = 0. The collection of all solutions has dimensionality three.

Proposition. If U ⊆ V is a subspace, then dimU ≤ dimV . Moreover, “=” if and only if U = V .

Proposition.

(1) Any linearly independent list with length dim(V ) is a basis of V .

(2) Any spanning list with length dim(V ) is also a basis of V .

15



Theorem. U, V ⊆W subspaces. Then

dim(U + V ) = dimU + dimV − dim(U ∩ V )

In particular, U + V is a direct sum if and only if dim(U + V ) = dimU + dimV .

Proof.
Consider a basis B = {w1, . . . , wk} of U ∩ V . Then we have the following extensions.

BU = {w1, . . . , wk, u1, . . . , um}

BV = {w1, . . . , wk, v1, . . . , vn}

We want to show that dim(U + V ) = m+ n+ k. In other words, we would like to show that

D = {w1, . . . , wk, u1, . . . , um, v1, . . . , vn}

is a basis of U+V . Clearly, D is a spanning list, so we simply must show that they are linerly independent.
In other words, we would like to show that

a1w1 + . . .+ akwk + b1u1 + . . .+ bmum = −c1v1 + . . .+ (−cnvn)

implies that all coefficients are 0.
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6 Precept 2:

Example. Is T = {(x, y, z) | x2 + y2 + z2 = 0} ⊆ F3 a subspace? If F = R, T = {⃗0}, so T is a
subspace! If F = C, (

√
w,w,w3/2) is a solution. Also, since (1, i, 0) ∈ T and (0,−i, 1) ∈ T but the

sum isnt in T , it is not a subspace. If F = F2, (x + y + z)2 = x2 + y2 + z2 = 0, so x + y + z = 0.
We have a subspace!

6.1 Matrix Algebra
We can look at matrix multiplication as follows:

Ax⃗ =

v⃗1 . . . v⃗m

 = x1v⃗1 + . . .+ xmv⃗m

We have some rules for Ax⃗:

(a) A(x⃗+ y⃗) = Ax⃗+Ay⃗ for x⃗, y⃗ ∈ Fm.

(b) A(kx⃗) = k ·Ax⃗ where k is a scalar.

Remark. We can write a linear system with augmented matrix[
A | b⃗

]
in “matrix form” as

Ax⃗ = b⃗

Example.

O

v1 v2

v3

v4

How many ways can we represent v⃗4 in terms of a linear combination of v⃗1, v⃗2, and v⃗3? our answer
is infinitely many. Proof: Note that we are working in two dimensions, so any pair of vectors in
{v⃗1, v⃗2, v⃗3} is a basis for R2. Thus, there are at least 3 solutions, which means there must be infinitely
many solutions (since any system of linear equations over R must have either 0, 1, or infinitely many
solutions). Another way to look at this is that after row reducing our matrix for the system, we get a
matrix such as 

1 ∗
1 ∗

1 0 ∗
1 ∗
0 0
0 0


and we can plug in anything we want for the variables corresponding to the zero rows.
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Example. Consider the vectors

v1 =


0
0
0
0

 , v2 =


1
0
0
0

 , v3 =


2
0
0
0



v4 =


0
1
0
0

 , v5 =


3
4
0
0

 , v6 =


0
0
1
0


Notice that

span(


0
0
0
0



1
0
0
0



2
0
0
0



0
1
0
0



3
4
0
0



0
0
1
0

) = span(


1
0
0
0



0
1
0
0



0
0
1
0

)
so the set of those three vectors is a basis for the span of all six. However, it is not a basis for F4.

Example. Do

11
1

,

32
1

,

65
4

 form a basis of F3? No since 3v⃗1+ v⃗2 = v⃗3. If we wanted to determine

this computationally, we could consider the following equation:

a1

11
1

+ a2

32
1

 =

65
4


Trnaslating this into an augmented matrix, we have1 3 6

1 2 5
1 1 4


The reduced form of this matrix is

rref(

1 3 6
1 2 5
1 1 4

) =
1 0 3
0 1 1
0 0 0


so a1 = 3 and a2 = 1!

Example. Consider the vectors

11
1

 ,
12
3

 ,
13
6

. Is this a basis for F3? Then we must determine

whether they are linearly independent, or

a1v⃗1 + a2v⃗2 + a3v⃗3 = 0⃗

Considering the matrix representation and finding the reduced row-echelon form, we get:

rref(

1 1 1 0
1 2 3 0
1 3 6 0

) =
1 0 0 0
0 1 0 0
0 0 1 0


so the only solution is a1 = a2 = a3 = 0. Therefore, these vectors are independent as desired.
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Remark. The columns of A corresponding to columns with leading 1s in rref(a) are linearly indepen-
dent.
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7 Lecture 5: Dimensions and Maps

7.1 Dimensions

Proposition. dimV = n, v⃗1, . . . , v⃗n ∈ V then the following are equivalent:

(1) v⃗1, . . . , v⃗n form a basis.

(2) v⃗1, . . . , v⃗n are linearly independent.

(3) span(v⃗1, . . . , v⃗n) = V

Proof. (Later)
Review the following proposition:

Proposition. V is a finite dimensional vector space, and U1, U2 ⊆ V are subspaces, then

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2)

Proof done last class.

7.2 Maps
Definition (Map/Function/Homomorphism). Consider two vector spaces V or W over F. We define

a linear map/function/homomorphism) a function T : V →W if ∀u, v ∈ V , λ ∈ F,

(1) T (u+ v) = Tu+ Tv

(2) T (λu) = λT (u)

For ease we sometimes staate these two conditions together with the condition T (λ1u1 + λ2u2) =
λ1T (u1) + λ2T (u2).

Definition. We define Hom(V,W ) (V and W vector spaces over F) as the set of all maps from V to
W that are linear.

Properties of Linear Maps.

(0) T 0⃗ = 0⃗ (Property 1 implies T (u) = T (u) + T (0))

(1) We have a special map (zero map) which maps all vectors to zero.

(2) I ∈ Hom(V,V), V → V , v 7→ v is the identity map.

(3) T ∈ Hom(Fn, Fm), T

x1...
xn

 =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 ∈ Fm

Example.

(1) ·(x+ 1) : P (F )→ P (F ) f 7→ (x2 + 1)f is a linear map.

Remark. When thinking about vector spaces and linear mappings, it is often much more easy to
analyze them when we think of vectors as linear combinations of their basis vectors, in which case we
can write them with coordinates.
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Notice that property (3) above allows us to think of matrices as linear maps. We will now pose the
following question: does there exist a linear map T : F2 → F3 such that

T

[
1
0

]
=

12
0

 and T
[
0
1

]
=

 3
0
−1

?

If yes, how many? The answer is that there is one, and we can represent it with the matrix

1 3
2 0
0 −1

.

Proposition. Let {u⃗1, . . . , u⃗n} be a basis of V . Let w⃗1, . . . , w⃗n be any n vectors in W . Then there
exists a unique T : V →W linear such that T v⃗i = w⃗i for all 1 ≤ i ≤ n.

Proof.
For all v ∈ V , there exists a unique way to write v as a1v1 + . . . + anvn. Then we define T as

Tv = a1w1 + . . .+ anwn. It is not hard to verify that this is a linear map.
Definition. Consider S, T ∈ Hom(V,W ). We define S+T : V →W to be the mapping v 7→ Sv+Tv.

We define λT to be v 7→ λTv.

Using these facts, we can see that Hom(V,W ) is a vector space.
Compose two linear maps

U, V,W/F

T ∈ Hom(U, V ) S ∈ Hom(V,W )

S ◦ T : U →W u 7→ S(Tu)

Properties of Compositions.

(1) T1 ◦ (T2 ◦ T3) = (T1 ◦ T2) ◦ T3

(2) T ◦ Iu = T = Iv ◦ T (T : U → V )

(3) (S1 + S2) ◦ T = S1 ◦ T + S2 ◦ T , S ◦ (T1 + T2) = S ◦ T1 + S ◦ T2.

Remark. If S, T ∈ Hom(V, V ) = End(V ) we have S ◦ T and T ◦ S linear maps.

Remark. Warning: S ◦ T ̸= T ◦ S (usually).

Example. Consider V = F3, e1, e2, e3. T (ei) = ei+1, S(e1) = e1, S(e2) = e3, S(e3) = e2.
Here, T ◦ S ̸= S ◦ T .

Consider T : V →W a linear map.
Definition (Kernel/Null Space). kerT = {v ∈ V | Tv = 0} ⊆ V
Definition (Image/Range). imT = {Tv | v ∈ V } ⊆W .

Proposition. kerT is a subspace of V and imT is a subspace of W .

Proposition. T is injective if and only if kerT = {⃗0}.

Proof Sketch. If we have Tv = Tw then it is the same as saying (there is a sort of equivalence)
T (v − w) = 0.
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Proposition. For T ∈ Hom(Fn,Fm), we write Tx = Ax where A is an m× n matrix, and

kerT (= kerA) = {x | Ax = 0}

imT (= imA) = span(


a11
a21
...

am1

 , . . . ,

a1n
a2n

...
amn

) = span(Te1, . . . , T en)

where ei =


...
1
...

 and the ith entry is a 1 and all other entries are 0s.

Definition (Surjective). T is surjective if imT =W .
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8 Lecture 6: Linear Maps

Lemma. Consider a linear mapping T ∈ L(V,W ) (L is the same as Hom).

(1) T is injective if and only if Null(T ) = {0}

(2) T is surjective if and only if Range(T ) =W

Theorem (Fundamental Theorem of Linear Maps). Assume dim(V ) < ∞. Let T ∈ L(V,W ).
Then

dimV = dim(Null(T )) + dim(Range(T ))

Proof.
Consider a basis of Null(T ): {u1, . . . , uk}. Applying the extension theorem, there is exists a sequence

of linearly independent elements v1, . . . , vm ∈ V such that

{u1, . . . , uk, v1, . . . , vm}

is a basis of V . We would now like to show that T (v1), . . . , T (vm) form a basis of W .
We will start by showing that Span(Tv1, . . . , T vm) = Range(T ). Consider any v ∈ V . Then v =

λ1v1 + . . .+ λkuk + µ1v1 + . . .+ µmvm, so

Tv = λ1Tu1 + . . .+ λkTuk + µ1Tv1 + . . .+ µmTvm

Since u1, u2, . . . , uk is a basis of Null(T),

Tv = µ1Tv1 + . . .+ µmTvm

so Span(Tv1, . . . , T vm) = Range(T ) as desired.
Two show the second part, we now want to show that Tv1 + . . . , T vm are linearly independent. If

k1Tv1 + . . .+ kmTvm = 0, then
T (k1v1 + . . .+ kmvm) = 0

so k1v1 + . . .+ kmvm is in the null space of T , so

k1v1 + . . .+ kmvm = d1u1 + . . .+ dkuk ⇒ k1v1 + . . .+ kmvm + (−d1)u1 + . . .+ (−dk)uk = 0

so k1 = k2 = . . . = km = d1 = . . . = dk = 0 as desired since these vectors are all independent (they form
a basis of V ), and Tv1, . . . , T vm are linearly independent. ■

Corollary. T ∈ L(V,W ). Then

(1) If T is injective, then dim(V ) ≤ dim(W )

(2) If T is surjective, then dim(W ) ≤ dim(V )

(3) If T is bijective, then dim(W ) = dim(V )

Corollary.

(1) a11x1 + . . .+ a1nxn = 0, a21x1 + . . .+ a2nxn = 0, . . ., am1x1 + . . .+ amnxn = 0. In matrix
form, we can write:  a1 . . . an

...
am1 . . . amn


x1...
xn

 = 0

n > m implies that this admits nonzero solutions.

(2) a11x1 + . . .+ a1nxn = b1, a21x1 + . . .+ a2nxn = b2, . . ., am1x1 + . . .+ amnxn = bm. m > n
implies that there exists b1, . . . , bm in Fm such that the above system is not solvable.
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Remark. Notice that the matrix in (1) is a mapping from Fn to Fm.

Proof.

(1)

If n > m, then the mapping is not injective, so the null space of T is not {0}, so there exists nonzero
solutions.

(2)

If m > n, then the mapping is not surjective, so the range of T is not W , so there exists an element
in W with no preimage. ■

8.1 Matrices
We pose the following question: dim(V ) = n, dim(W ) = m, T ∈ L(V,W ). Hww can we realize T as

an m×n matrix? Consider Bv = {v1, . . . , vn} basis of V , and Bw = {w1, . . . , wm} basis of W . We write:

T (vj) = a1jw1 + . . .+ amjwm

We denote

M(T,Bv, Bw) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Lemma. Consider S, T ∈ L(V,W ). Then

(1) M(S) +M(T )) =M(S + T )

(2) λM(T ) =M(λT ) for all λ ∈ F

Lemma. T1, . . . , Tm ∈ L(V,W ) are linearly independent if and only ifM(T1) . . . ,M(Tm) are linearly
independent.

Proof.

k1T1 + . . .+ kmTm = 0⇔M(k1T1 + . . .+ kmTm) = 0

⇔ k1µ(T1) + . . .+ kmµ(Tm) = 0

■

Now, we would like to motivate matrix multiplication. Consider two linear maps S ∈ L(V,W ) and
T ∈ L(U, V ). We can define matrix multiplication as

S · T =M(S · T )

Corollary. dim(the space of all m× n matrices) = m · n.

Proof Sketch. We can simply choose the n · m matrices with 1s in one of the n · m entries and 0s
everywhere else.

Corollary. dim(V ) = m, dim(W ) = n, then dim(L(V,W )) = m · n.
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Example. A =

1 1 2
2 4 2
2 1 5

. Compute the dimension of the range of A. Using the Fundamental

Theorem of Lienar Maps,

dim(Range(T )) = dimV − dim(Null(T )) = 3− dim(Null(T ))

so we would like to find the null space of the matrix. Performing row reduction on the matrix, we get:

rref(

1 1 2
2 4 2
2 1 5

) =
1 1 2
0 1 −1
0 0 0


so the dimension of the null space is 1. Therefore, dim(Range(T )) = 3− 1 = 2.
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9 Precept 3:

9.1 Matrices
Cpmsoder a linear map: T · V → W . If a basis of V is (v1, . . . , vn) and a basis of W is w1, . . . , wn,

then we can write
Tvk = A1kw1 + . . .+Amkwm

then we can write this as the matrix  A1k

...
Amk


If V = Fn, w = Fm, use standard basis e1 through ek to say that Tej is the jth column ofM(T ).
The data of T : V →W is “equivalent” to the data of M(T, (v1, . . . , vn), (w1, . . . , wm)).

Example. T : F3 → F2. Suppose it maps

T

10
0

 =

[
7
11

]

T

01
0

 =

[
6
9

]

T

00
1

 =

[
−13
17

]

so M(T ) is
[
7 6 −13
11 9 17

]
.

If we want to look at more geometric examples, if we wnat to see what happens to the standard basis

under
[
1 0
0 −1

]
, we can just read the columns to find that

[
1
0

]
goes to

[
1
0

]
and

[
0
1

]
goes to

[
0
−1

]
.

We can use this idea to come up with the rotation matrix for two dimensions:[
cos θ − sin θ
sin θ cos θ

]

Example. Suppose we have two vectors v1 and v2 and we have a transformation T that takes v1 to
v1 and v2 to 3v2. Then, we can write the transformation as the matrix

M(T, (v1, v2), (v1, v2)) =

[
1 0
0 3

]
This is basically telling us that the v2 coordinate gets multiplied by a factor of two and the v1 coordinate

stays the same. Now suppose we have
[
3
1

]
and v2 =

[
1
2

]
in standard basis. Then,

M(T, (v1, v2), (e1, e2)) =

[
3 3
1 6

]
=

[
3 1
1 2

] [
1 0
0 3

]
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9.2 Bases for Images

Example. Consider A =

[
2 3
6 9

]
. What is a basis for im(T ) (T being the transformation associated

with A)? Notice that

A

[
x1
x2

]
=

[
2 3
6 9

] [
x1
x2

]
= x1

[
2
6

]
+ x2

[
3
9

]
Since the image of A is the span of its column vectors, the image of A is span(

[
2
6

]
,

[
3
9

]
) which is the

same as span(
[
1
3

]
).

Example (PSet 3/A). Take T : V →W linear, with (v1, . . . , vn) being a basis of V and (w1, . . . , wm)
being a basis of W .

A =M(T, (v1, . . . , vn), (w1, . . . , wm))

B = rref(A)

with pivots (leading 1s) in columns j1, . . . , jr. Then

yk =

m∑
i=1

ai,jkwi, 1 ≤ k ≤ r

is a basis for im(T ).

Proof will be done for homework.

9.3 Bases for Kernels

Example. Consider ker(
[
1 1 1
1 2 3

]
). We would like to find a basis for the vectors such that

[
1 1 1
1 2 3

]x1x2
x3

 =

[
0
0

]

This is equivalent to solving the system of linear equations from the augmented matrix[
1 1 1 0
1 2 3 0

]
When we find the row reduced echelon form of this above matrix, we get[

1 0 −1 0
0 1 2 0

]
so our solution is given by 

 t
−2t
t

∣∣∣∣∣∣ t ∈ F


which is given by span

 1
−2
1

, so

 1
−2
1

 is a basis.
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Notice that the vectors in ker(A) correspond to relations among the colmn vectors. In the above
example, 1 times the first column +− 2 times the second column + 1 times the third column is 0.

Example (PSset 3/B). Take T : V → W linear, with (v1, . . . , vn) being a basis of V and
(w1, . . . , wm) being a basis of W .

A =M(T, (v1, . . . , vn), (w1, . . . , wm))

B = rref(A)

For every j such that the jth column of B has no pivots, consider

ci =

{
1 i = j
0 i ̸= j and ith column of B does not have a pivot

This is uniquely determined by Bc = 0 otherwise.

xj =

n∑
i=0

civi

for the (n− r) values of j such that jth column of B has no pivot. The xjs form a basis for ker(T ).

Example. Notice that

rref
([

1 1 1
1 2 3

])
=

[
1 0 −1
0 1 2

]
Then c1 = 1, c2 = −2, c3 = 1
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10 Lecture 7: Matrices

Theorem (Rank-Nullity Theorem). Consider T : V →W , with T ∈ L(V,W ).

dim(V ) = dim(Null(T )) + dim(Range(T ))

and the dimension of the range of T is also known as the rank.

If we have bases BV = {e1, . . . , en} of V and VW = {f1, . . . , fm} of W , and T (ej) =
∑m

i=1 aijfi for
all j, then the matrix of T is a11 a12 . . . a1n

...
...

...
...

am1 am2 . . . amn


Remark. Shouldnt W instead be the image of T (V ).

Lemma. M∈ Hom(Hom(V,W ),Fm,n). In other words, M is linear.

We will now discuss taking the products of matrices. Consider S ∈ L(V,W ) and T ∈ L(U, V ). We
define

M(S) · M(T )
def
=M(S ◦ T )

Consider the bases {e1, . . . , en} for U , {f1, . . . , fm} for V , and {h1, . . . , hk} for W . Using these, we can
write

T (ej) =

m∑
i=1

aijfi

S(fi) =

k∑
l=1

blihl

S ◦ T (ej) =
k∑

k=1

cljhl

Also

S ◦ T (ej) = S(

m∑
i=1

aijfi)

=

m∑
i=1

aijS(fi)

=

k∑
l=1

(

m∑
i=1

aijbli)hl

cli =

m∑
i=1

aijbli

So we have essentially derived that matrix multiplication is the “row times column” multiplication that
we are familiar with.

Definition. A ∈ Fn,n is invertible if and only if there exists a matrix B ∈ Fn,n such that AB = BA =
In (the identity matrix is the matrix with the diagonal of ones).

Remark. Notice that B must be linear since B ∈ Fm,n so by definition we have to check this to
verify something is invertible.
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Theorem. The set of invertible matrices, denoted by GL(n,F) is a group with respect to matrix
product. GL is an abbreviation for “General Linear”.

Notation.
Aij : row i, column j

Ai,· : entire row j

A·,k : entire column k

Lemma. A ∈ Fm,n, B ∈ Fn,p. Then AB ∈ Fm,p with

(1) (AB)ij = Ai,· ·B·,j =
∑n

k=1AikBkj

(2) (AB)·,k = A ·B·,k

Notations. Let {v1, . . . , vm} be a basis of V . Then the matrix corresponding to v ∈ V , with
v =

∑
λivi, is

M(v) =

λ1...
λm


Consider T ∈ L(v,W ), with a basis BW = {f!, . . . , fn}. Then

M(T (vk)) =M(

n∑
i=1

aikfi)

=M(T )·,k

Also,
M(TV ) =M(T ) · M(T )

We will now discuss invertible maps.
Definition (Invertible Linear Map). Consider T ∈ Hom(V,W ). T is invertible if and only if there

exists another linear map S ∈ Hom(W,V ) such that TS is the identity of the space W and ST is the
identity of the space V . S is called the inverse of T .

Lemma. Any invertible linear map has a unique inverse.

Proof.
Consider linear map T from V to W . Suppose T has two inverses S1, S2. Then

S1 = S11W = S1TSw = 1V S2 = S2

where 1W and 1V are the identity maps on W and V respectively. ■

Lemma. Consider T ∈ Hom(V,W ). T is invertible if and only if T is bijective.

Proof.
We will first show the forward direction. We start by showing that T is injective. Let v ∈ Null(T ).

Tv = 0, so T−1Tv = T−10, so v = 0. Thus T is injective. We now show that T is surjective. For all
w ∈W , taking v = T−1W , Tv = T (T−1w) = w.

We will now show the reverse direction. Consider bijective linear map T ∈ Hom(V,W ). For all
w ∈W , w has a unique preimage Ŵ ∈ V such that T (ŵ) = w. Define S(w) = ŵ.

ST (v) = S(w) = v

so ST is the identity map on V .
TS(w) = T (ŵ) = w
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so TS is the identity map on W . For homework, we verify that S is linear. Then S is the inverse of T
as desired.

Definition. T ∈ Hom(V,W ) is a isomorphism if T is invertible. V,W are isomorphic if there exists
an isomorphism T : V →W .

Remark. If we instead define inverses with S any arbitrary map such that TS and ST are the
respective identities, is it necessary that S is linear?

Theorem. V,W : finite dimensional vector spaces. V is isomorphic to W if and only if dim(V ) =
dim(W ).

Proof.
We start with the first direction. There exists an isomorphism T : V →W . Then

dim(V ) = dim(Null(T )) + dim(Range(T )) = dim(W )

To show the reverse direction, consider a basis of V , BV = {e1, . . . , en} and a basis of W , BW =
{f1, . . . , fn}. There exists a unique linear map T ∈ Hom(V,W ) such that Tei = fi

(1) T injective: 0 = Tv = T (
∑

i λiei) =
∑

i λiT (ei) =
∑

i λifi

(2) Surjective:

Corollary. Any V with dimV = m is isomorphic to Fm.

Corollary. L(V,W ) ∼= Fm,n, where dimV = n and dimW = m.

Definition (Linear Operator). T ∈ L(V, V ) = L is called a linear operator.

Theorem. Consider T ∈ L(V ). Then

T injective ⇔ T surjective ⇔ bijective

Proof with dim(V ) = dim(Null(T )) + dim(Range(T )).
We can now discuss row operations. We have three operations:

• Swap: swap two rows.

Consider A =

1 2 3
4 5 6
7 7 7

. A row swap might yield:

1 2 3
7 7 7
4 5 6


and we can represent this with 1 0 0

0 0 1
0 0 1

A =

1 2 3
7 7 7
4 5 6


• Multiplication of a row by a scalar

• Replacing rows by a linear combinations including that row
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11 Lecture 8: Products and Quotients
Consider V,W vector spaces. Then
Definition (Product). V ×W = {(v, w) | v ∈ V,w ∈W}.
Definition (Addition). (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2.
Definition (Scalar Multiplication). λ(v, w) = (λv, λw).

Example. Consider R × R3. This is the set of vectors of the form (x1, (x2, x3, x4)), which is four
dimensional.

Lemma. dim(V ) = n, dim(W ) = m means that dim(V ×W ) = n+m.

Proof.

{(ei, 0), (0, fj), 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis. ■

Lemma. Consider V,W ⊆ U subspaces with dimV = n, dimW = m. Then

dim(V ⊕W ) = n+m

In particular V ×W ∼= V ⊕W .

Lemma. Let V1, . . . , Vm ⊆ V . We define a linear map Γ : V1 × . . .× Vm → V1 + . . .+ Vm.

(u1, . . . , um) 7→ u1 + . . . um

Then Γ is surjective and is injective if and only if the above sum is a direct sum.

Proof.
The surjectivity of Γ follows directly from its definition. Γ is injective if and only if the null space of

Γ is {0}, so u1 + . . .+ um = 0 ∈ V implies ui = 0 for all i, which happens if and only if V1 + . . .+ Vm is
a direct sum by definition. ■

Theorem. Let V1, . . . , Vm ⊆ V . V1 + . . .+ Vm is a direct sum if and only if

dim(V1 + . . .+ Vm) =

m∑
i=1

dim(Vi)

Proof.
Applying the rank-nullity theorem,

m∑
i=1

dim(Vi) = dim(Null(Γ)) + dim(V1 + . . .+ Vm)

Thus dim(V1 + . . .+ Vm) =
∑m

i=1 dim(Vi) if and only if dim(Null(Γ)) = {0}, which is true if and only if
V1 + . . .+ Vm is a direct sum. ■
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Corollary.
m⊕
i=1

Vi ∼=
m∏
i=1

Vi

∏
α∈A

Vα = {(v1, v2, . . .) | ∀α ∈ A, vα ∈ Vα}

∑
α∈A

Vα = {
∑
a∈A

va | ∃ finite α ∈ A, vα ̸= 0}

Definition (Affine Subset). U ⊆ V subspace. An affine subset may be defined with

v + U = {v + u | u ∈ U}

with v ∈ V .

Example. V = R3, U = {(x, y, 0) | x, y ∈ R}. For any w ∈ R3, the affine subset w + U is the
plane-containing W and parallel to U .

Definition (Quotient Set). Consider the subspace U ⊆ V .

V/U = {v + U | v ∈ V }

We have for all v, w ∈ V , v ∼ w if v − w ∈ U .

Lemma. The following are equivalent:

(1) v + U = w + U

(2) v ∼ w, i.e. v − w ∈ U

(3) ((v + U) ∩ (w + U) = ∅

Consider v, w ∈ V and λ ∈ F. Denote equialence classes with brackets.

[v] + [w] = [v + w]

λ[v] = [λv]

We can also verify well-definedness:

[v1] + [w1] = [v1 + w1]

[v2] + [w2] = [v2 + w2]

We have v1 ∼ v2 and w1 ∼ w2 means [v1 + w1] = [v2 + w2]. This is since v1 − v2 ∈ U and w1 − w2 ∈ U
implies

v1 + w1 − (v2 + w2) = v1 − v2 + w1 − w2 ∈ U

Lemma. U ⊆ V , then V/U is a vector space.

Lemma. We define πU : V → V/U . Then πU ∈ Hom(V, V/U) is surjective. Null(πU ) = U .

Proof.
We have

πU (w) = [w]

Note that [0] = 0 + U ∈ V/U is the zero element. In other words

πU (w) = [0] = 0 + U
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Thus w ∈ U .

Theorem. dim(V/U) = dim(V )− dim(U).

Proof.

dim(V ) = dim(Null(πU )) + rank(πU )

and since πU is surjective, rank(πU ) = dim(V/U). ■

Theorem. T ∈ Hom(V,W ). Null(T ) ⊆ V .

T ′ : V/Null(T )→W, [v] 7→ Tv

Proof.
We would like to show that

(1) Range(T ) = Range(T ′)

(2) V/Null(T ) ∼= Range(T )

Using the Rank-Nullity Theorem.

Remark. We can actually show that (W/U)/(V/U) ∼= (W/V ).
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12 Lecture 9:

Remark. I was a bit distracted so my notes for this class were a bit bad.

Consider T ∈ Hom(V,W ). Let us define T̃ : V/Null(T ) → W , with U
def
= Null(T ) and V,W ∈ [v]U ,

[v]U 7→ Tv.
Tw = Tv + T (w − v) = Tv

so T̃ is well-defined. Null(T̃ ) = ∅V/Null(T ). Let [v]U ∈ V/U satisfy Tv = 0 whenever v ∈ textNull(T ).
Then [v]U = Null(T ) ⇔ [v]U is the zero element in V/Null(T ). Thus, T̃ is injective from V/Null(T ) to
W .

(1) Range(T̃ ) = Range(T )

(2) V/Null(T ) ∼= Range(T )

Proof 1.
T : V →W , dimV = dim(Null(T )) + dim(Range(T )). Thus,

dim(V/Null(T )) = dim(Range(T ))

Proof 2.
T̃ is the bijection from V/Null(T ) onto Range(T̃ ).

12.1 Category Theory
In any category, we have objects A and morphisms are the maps between any two given objects.

Object((V,W ), f : V →W )

such that U ⊆ Null(f).
We have a morphism from V to W1, f1, a morphism from W1 to W2, g ∈ Hom(W1,W2), and a

morphism from V to W2, f2, such that
f2 = f1 · g

12.2 Back on Track
Definition (Dual Space). Consider V a vector space over F. We can define V ′ as Hom(V,F), where

every element in V ′ is called a linear function on V .

Example. V = Fn. Given any c1, . . . , cn ∈ F,

φ(x1, . . . , xn) = c1x1 + . . .+ cnxn

⇒ φ ∈ V

However with
ψ(x1, x2) = x1 + x2 + x1, c1 ̸= 0

ψ ̸∈ V ′

Example. Take V = P(R). Define D(p) = p′(1). D is in V .

Example. V = C[0, 1] the set of continuous functions from 0 to 1. I(f) =
∫ 1

0
g(x)f(x) dx. Then

I ∈ V ′.
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Theorem. dim(V ) = n ⇒ V ∼= V ′. Moreover, {ϕ1, . . . , ϕn} is a basis of V ′. Let {e1, . . . , en be a
basis of V .

ϕi(ej) = δij

δij
def
=

{
1 i = j
0 i ̸= j

where δij is called the Kronecker symbol.

Proof.

(1)

We claim that for all ϕ ∈ V ′, ϕ =
∑n

i=1 λiϕi.

Theorem. V ∼= V ′′ = (V ′)′. Φ : V → V ′′ defined by ΦV (ϕ) = ϕ(v), for all ϕ ∈ V ′ is an isomorphism.

Proof.
Consider {e1, . . . , en} a basis of V , with v =

∑n
i=1 λiei. Taking ϕi,

0 = ϕi(v) =

n∑
i=1

λiϕj(ei) =

n∑
i=1

λiδji = λj

.
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13 Row and Column Spaces
Definition (Row Space). The row space of a matrix M is the space spanned by its row vectors.
Definition (Column Space). The column space of a matrix M is the space spanned by its column

vectors.
Definition (Row Rank). The row rank of a matrix A is the dimension of its row space.
Definition (Column). The column rank of a matrix A is the dimension of its column space.

Theorem. Let A ∈ Fm,n. Then

rowrank(A) = colrank(A) = rank(A)

Example.
[
1 2 3 4 5

]
∈ R1,5. Here rowrank(A) = colrank(A) = rank(A) = 1.[

1 2 3
0 1 1

]
∈ R2,3. Here rowrank(A) = colrank(A) = rank(A) = 2.

Definition (Duel Map (Operator Adjoint)). Let T ∈ L(V,W ). Its duel map T ′ ∈ L(W ′, V ′) is
defined by

T ′(φ)
def
= φ ◦ T, ∀φ ∈W ′

i.e.
T ′(φ)(V ) = φ(Tv)

for all v ∈ V .

Example. D : P(R)→ P(R)
p(x) 7→ p′(x)

φ ∈ L(P(R),R).

φ(p(x)) =

∫ 1

0

xp(x) dx

D′(φ)(p(x)) = φ ◦D(p(x))

=

∫ 1

0

xp′(x) dx = p(1)−
∫ 1

0

p(x) dx

= p(1)−
∫ 1

0

p(x) dx

Lemma. ( )′ : L(V,W )→ L(W ′, V ′) is linear, i.e.

(1) (T + S)′ = T ′ + S′

(2) (λT )′ = λT ′

Moreover, S ∈ L(V,W ), T ∈ L(U, V ).

(ST )′ = T ′S′

Proof.

(ST )′(φ) = φ ◦ (ST )
= (φ ◦ S) ◦ T
= (S′φ) ◦ T
= T ′ ◦ S′(φ)

■
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Example. Let A ∈ Fm,n

Definition (Transpose of a Matrix). In AT ,

aTj,i
def
= ai,j

Lemma. A,B ∈ Fm,n. Then

(1) (A+B)T = AT +BT

(2) (λA)T = λAT

(3) (AB)T = BTAT

Proof of (3).

(AB)Ti,j = (AB)ji

=

n∑
k=1

AjkBki

=

n∑
k=1

(AT )kj(B
T )ik

as desired. ■

Lemma. Let T ∈ L(V,W ). Then
M(T ′) = (M(T ))T

Proof.
BV = {e1, . . . , dn}, BW = {f1, . . . , fm}

BV ′ = {φ1, . . . , φn}, BW ′ = {ψ1, . . . , ψm}

φi(ej) = δij , ψk(fl) = δkl

(M(T ))ij = Aij , (M(T ′))ij = Bij .

Our goal is to prove that Bij = Aji.

T ′(ψj) =

n∑
k=1

Bkjϕk

Taking any er, 1 ≤ r ≤ n,

T ′(ψj)(er) =

n∑
k=1

Bkjϕk(er) =

n∑
k=1

Bkjδkr = Brj

On the other hand,
T ′(ψj)(er) =

def
= ψj(T (er))

= ψj(

m∑
p=1

Aprfp) =

m∑
p=1

Aprψj(fp)

=

m∑
p=1

Aprδjp

= Ajr
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■

Definition (Annihilator). V is a vector space. Consider U a subset of V . U◦ = {φ ∈ V ′ | φ(u) =
0, ∀u ∈ U} is called the annihilator of U .

Example. Consider R3. Suppose U is a line OX. The annihilator of U is all functions that map the
x axis to zero.

Lemma. Consider U ⊆ V a subspace. Then

dim(U) + dim(U◦) = dim(V )

Proof.

BU = {e1, . . . , em}

Extended basis BV = {e1, . . . , em, ê1, . . . , êk}. Dual basis BV ′ = {φ1, . . . , φm, φ̂1, . . . , φ̂k}.

φ̂i(ej) = 0, φi(êj) = 0, φi(ej) = δij .

φ̂i(êj) = δij

φ ∈ U◦

U◦ = span(φ̂1, . . . , φ̂k)

φ =

m∑
i=1

aiφi +

k∑
j=1

bjφ̂j

Lemma. T ∈ L(V,W ).

(1) Null(T ′) = (Range(T ))◦

(2) dim(Null(T ′)) = dim(Null(T )) + dimW − dimV

Proof.

(1)

Taking any φ ∈W ′,
0 = T ′(φ) = φ ◦ T ⇔ ∀v ∈ V, 0 = φ ◦ T (V )

(Range(T ))◦ ⊆ Null(T ′)

dim(Null(T ′)) = dim((Range(T ))◦)

= dimW − dim(Range(T ))

= dimW − dimV + dim(Null(T ))

Lemma. T ∈ L(V,W ). Then

(1) dim(Range(T ′)) = dim(Range(T ))

(2) Range(T ′) = (Null(T ))◦

(3) T injective if and only if T ′ surjective

(4) T surjective if and only if T ′ injective

Proof.
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(1)

dim(Range(T ′)) = dimW − dim(Null(T ′))

= dimW − dim(Null(T ′))

= dimV − dim(Null(T ))

= dim(Range(T ))

(2)

Range(T ′) ⊆ (Null(T ))◦

T ′(φ) = φ ◦ T

Taking ϕ ∈ Null(T ),
0 = φ ◦ T (V )

so
T ′(φ) ∈ (Null(T ))◦

dim(Range(T ′)) = dim(Range(T ))

= dimV − dim(Null(T ))

= dim(Null(T ))◦

Now we show our original theorem in one step:

colrank(A) = dim(Range(A)) = dim(Range(A′)) = dim(Range(AT )) = colrank(AT ) = rowrank(A)
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14 Precept 5:

14.1 Unusual Property of Quotient Spaces
I will not include the comparison between 3.E.20 and 3.E.18 from the textbook in these notes.
The question we now ask is when does a map V →W “descend” to a linear map V/U →W?

Theorem (Universal Property of Quotient Spaces). If U ⊂ V is a subspace, there exists a space
V/U and a linear map π : V → V/U satisfying the following universal property:
For every linear map T : V →W such that U ∈ null T , there exists a unique linear map S : V/U →W
making the diagram commute:

Proof.
Define V/U and π : V → V/U as in 3.83 and 3.88. S exists and is unqieu by 3.E.18 and 3.E.20(b). ■

“Giving a map T : V →W such that U ⊂ null T is the same data as giving a map V/U →W ”

Example 3.91d. V/(null T )→W induces an isomorphism V/(null T )→ range T .

Corollary. Consider U ⊂ V a subspace. Let π1 : V → X1 and π2 : V → X2 be two linear
maps satisfying the universal property for the quotient π : V → V/U . Then, there exists a unique
isomorphism ϕ : X1 → X2 such that for all T : V →W where U ⊂ null T , the diagram commutes.

A slogan for this is: “If two objects/maps satisfying the same UP, they are isomorphic in a unique
way making all the data compatible”

14.2 Examples of Quotient Spaces

Example. T : P(F)→ P(F), f 7→ df

dz
.
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15 Eigenvalues and Eigenvectors
Before we start, a quick distraction.

Theorem. Every polynomial p ∈ P(C) has a root in C.

Corollary. Every polynomial can be factored as

p(z) = A(z − z1)(z − z2) . . . (z − zn)

Ok now we go back to the main topic. The word Eigenvalues comes from the word Eigenwart.
Consider V = U ⊕W and a transformation T . We want to know what U satisfy T : U → U?

Example. Consider T : R3 → R3 such that Te1 = e2, Te2 = −e1, and Te3 = e3. Then we can write

R3 = R2
x,y ⊕ Rz

Since dimRz = 1 and TRz = Rz, any vector along Rz is an eigenvector. An eigenvector is a vector
that only gets scaled under a transformation T .

Definition (Eigenvalue and Eigenvector). Let T ∈ L(V ). λ ∈ F is called an eigenvalue if ∃v ∈ V \{0}
such that

Tu = λv

In this case, v ∈ V \{0} is called an eigenvector.

Example.

A =

λ1 0 0
0 λ2 0
0 0 λ3


Ae1 = λ1e1

Ae2 = λ2e2

Ae3 = λ3e3

so e1, e2, e3 are eigenvectors.

Lemma. Let dim(V ) <∞. T ∈ L(V ) and λ ∈ F. Then the following are equivalent:

(1) λ is an eigenvalue

(2) T − λI is not injective

(3) T − λI is not surjective

(4) T − λI is not bijective

Proof.
λ is an eigenvalue is equivalent to there exists v ∈ V \{0} such that Tv − λv = 0 which is equivalent

to (T − λI)v = 0 which is equivalent to T − λI is not injective. The rest being equivalent is a previous
theorem. ■

Definition (Invariant Subspace). Consider T ∈ L(V ). A subspace U ∈ V is called invariant under
T if T (U) ⊆ U , i.e. Tu ∈ U for all u ∈ U .

42



Proposition. Let T ∈ L(V ) and λ1, . . . , λm be distinct eigenvalues. If v1, . . . , vm are eigenvectors
with respect to λ1, . . . , λm, then v1, . . . , vm are linearly independent.

Proof.
Suppose for contradiction that the are not linearly independent, so vm =

∑m−1
j=1 kjvj . Then

Tvm = T

m−1∑
j=1

kjvj

Tvm =

m−1∑
j=1

kjTvj

λmvm =

m−1∑
j=1

kjλjvj

0 =

m−1∑
k=1

kj(λm − λj)vj

Since λm − λj ̸= 0 (since they are distinct), v1, . . . , vm−1 must also be linearly dependent, and so on, so
v1 must be linearly dependent, a contradiction. ■

Corollary. Let T ∈ L(V ), dimV = n. Then there are at most n distinct eigenvalues.

Definition (Quotient Operator). T ∈ L(V ), U ⊆ V invariant under T . Then

(1) Restriction operator T |U ∈ L(U). This just means

T |U (u) = TU, ∀u ∈ U

(2) Quotient operator T/U ∈ L(V/U).

T/U(v + U) = Tv + U

Theorem. Let V be a vector space over C with dimV = n. Then any T ∈ L(V ) has an eigenvalue
in C.

Example. Consider P : C → C. p(z) =
∑n

j=0 ajz
j z ∈ C. Let T ∈ L(V ). p(T ) =

∑n
j=0 ajT

j is
still a linear operator on V . T 0 = I, T 3v = T (T (Tv)) so everything is linear.

Lemma. Given p, q ∈ P(F), T ∈ L(V ), then

(1) (pq)(T ) = p(T )q(T )

(2) p(T )q(T ) = q(T )p(T ) (!! This is not true in general, only here because these are polynomials)

Proof not shown.
Proof.
Let v ̸= 0. We take T 0v, Tv, T 2v, . . ., Tnv. Since the dimension of V is n which is less than n+ 1,

these vectors are linearly dependent. In other words, there exists a0, . . . , an ∈ C such that

a0v + a1Tv + . . .+ anT
nv = 0⇒ p(T )(v)

where

p(z) =

n∑
j=0

ajz
j
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is a nonconstant polynomial in P(C). Thus,

p(z) = A(z − λ1) . . . (z − λn)

with A ̸= 0. In other words
A(T − λ1I) . . . (T − λnI)v = 0

Thus, suppose all of these factors are invertible. Then taking each inverse, we have v = 0, a contradic-
tion. Thus, there exists j such that T−λjI is not invertible. so it is not bijective, so λj is an eigenvalue. ■

Example. The fact that we used C in the last theorem is important. Consider V = R2. T (z, w) =
(−w, z). Suppose there exists an eigenvalue λ. Then there exists z, w such that

(−w, z) = λ(z, w)

−w = λz, z = λw

However, this is impossible. Thus there is no eigenvalue.

Definition (Upper Triangular). A = (aij) ∈ Fn,n is called upper triangular if aij = 0 for all i > j.

Theorem. Let T ∈ L(V ). V is a vector space over C, with dimV < ∞. Then there exists a basis
B = {v1, . . . , vn} such that M(T ) with respect to B is upper triangular.

Lemma. Suppose BV = {v1, . . . , vm} is a basis of V , and T ∈ L(V ). Then the following are
equivalent:

(1) M(T ) with respect to Bv is upper triangular.

(2) Tvj ∈ span{v1, . . . , vj} for all 1 ≤ j ≤ n.

(3) span(v1, . . . , vj) is invariant under T for all 1 ≤ j ≤ n.

Proof.

Tv1 = a11v1 ∈ span{v1}

Tv2 = a12v1 + a22v2 ∈ span{v1, v2}

etc. so (1) and (2) are equivalent.
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16 Lecture 11:

Theorem. Consider T ∈ L(V ), V a vector space over C with dimV < ∞. Then ∃ a basis B of V
such that M(T,B) is upper triangular.

Proof.

Lemma. BV = {v1, . . . , vm} basis of V . Pick T ∈ L(V ). Then the following are equivalent:

(1) M(T,B) is upper triangular

(2) For all 1 ≤ j ≤ m, Tvj ∈ span{v1, . . . , vj}.

(3) For all 1 ≤ j ≤ m, span{v1, . . . , vj} is invariant under T .

Proof done previously.
We will prove it by induction on dimV = n. For our base case, consider n = 1. Then we are done

becauseM(T ) is a one by one matrix and we are done with any basis. Assume that the result holds for
any V with 1 ≤ dimV ≤ n− 1. We now show that the statement holds for any space V with dimV = n.

By the existence theorem of complex eigenvalue to T , ∃λ ∈ C an eigenvalue of T . Let us take
U = Range(T − λI).

(1) If dimU = 0, T ∼= λI.

(2) dimU ≥ 1. Then since λ is an eigenvalue, T − λI is not surjective, so Range(T − λI) is strictly
less than n.

We now claim that U is invariant under T . In fact, for every w ∈ U , Tw = (T − λI)w + λw. Since
(T − λI)w is in U , and λw is in U , Tw is in U as desired.

Thus, T |U is a linear operator. Applying the induction hypothesis, there exists a basis BU =
{v1, . . . , vk} of U with 1 ≤ k = dimU ≤ n − 1 such that M(T |U , BU ) is upper triangular. Using the
Lemma, T |U (vj) ∈ span(v1, . . . , vj) for all 1 ≤ j ≤ k. U can be extended toBV = {v1, . . . , vk, vk+1, . . . , vn}
a basis of V .

Tvi = (T − λI)vi + λvi ∈ span(v1, . . . , vk, vi) ⊆ span(v1m. . . , v2, . . . , vi)

for all k + 1 ≤ i ≤ n. ■

Remark. Couldn’t we also prove this by doing some kind of column reduction on the matrix of B
with respect to an arbitrary basis?

Theorem. B = {v1, . . . , vn} is a bsis of V . Consider T ∈ L(V ). Assume that M(T,B) is upper
triangular. T is invertible is equivalent to each diagonal entry not equalling zero.

Proof.
We start with the reverse direction. Consider

M(T,B) =


λ1
0 λ2
...

...
. . .

0 0 . . . λn


with λ1, . . . , λn ̸= 0. Since λ1 ̸= 0,

v1 =
λ1v1
λ1

=
1

λ1
Tv1 ∈ Range(T )

Tv2 = a1v1 + λ2v2 ⇒ v2 =
1

λ2
(Tv2 − a1v1) ∈ Range(T )
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Repeating the above, vj ∈ Range(T ) for all 1 ≤ j ≤ n. Thus, VB = {v1, . . . , vn} basis of V implies that
Range(T ) = V . Thus, T is surjective, which implies that it is invertible.

We now conisder the forward direction. Since Tv1 = λ1v1, T is invertible implies that λ1 ̸= 0. Since
Tv2 = a1v1 + λ2v2, if λ2 = 0, the nTv@ = a1v1 ∈ Span(v1). Thus, span(Tv1, T v2) = span(v1), but this
means they are not independent, a contradiction of invertibleness. Thus, λ2 ̸= 0. In general, although
we won’t show it again here, λj ̸= 0 for all 1 ≤ j ≤ n. ■

Corollary. M(T,B) is upper triangular. Then the eigenvalues of T are precisely the diagonal entries
of M(T,B).

Proof.
Consider

M(T − λI,B) =


λ1 − λ

0 λ2 − λ
...

...
. . .

0 0 . . . λn − λ


λ is an eigenvalue is equivalent to T − λI is not invertible, which is equivalent to λ = λi for some
1 ≤ i ≤ n. ■

Definition (Diagonal Matrix). We say a matrix A = (aij) ∈ Fn,n is diagonal if and only if aij = 0
for all i ̸= j.

Definition (Eigenspace). Let T ∈ L(V ) with an eigenvalue λ ∈ F.

E(λ, T ) = Null(T − λI)

is called the eigenspace of T with respect to λ.

Lemma. dimV <∞, T ∈ L(V ) has distinct eigenvalues λ1, . . . , λk. Then
∑k

j=1E(λj , T ) is a direct
sum.

Proof.
Consider uj ∈ E(λj , T ) for all 1 ≤ j ≤ k. Then

u1 + . . .+ uk = 0

implies that uj = 0 for all 1 ≤ j ≤ k (because of independence). So we have a direct sum. In particular,

k∑
j=1

dimE(λj , T ) ≤ n = dimV

■

Definition. T ∈ L(T ) is diagonalizale if ∃ a basis B of V such thatM(T,B) is a diagonal matrix.

Example. If T ∈ L(V ), dimV = n has n distinct eigenvalues, then T is diagonalizable. Let vj ∈ V
satisfy Tvj = λjvj for λi ̸= λj when i ̸= j. Then B = {v1, . . . , vn} is linearly independent. We have

V = E(λ1, T )⊕ E(λ2, T )⊕ . . .⊕ E(λn, T )
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Theorem. T ∈ L(V ), dimV = n <∞, consider λ1, . . . , λm distinct eigenvalues. Then the following
are equivalent:

(1) T is diagonalizable

(2) V has a basis consisting of eigenvectors of T

(3) ∃ 1 dimensional subspaces U1 . . . Un ⊆ V such that

V =

n⊕
j=1

Uj

(4)

V =

m⊕
j=1

E(λjT )

(5)

dimV =

m∑
j=1

dimE(λj , T )

Proof Sketch.
It is easy to show by definition that 1, 2, and 3 are equivalent. Also, 2 implies 4 by the lemma and

definition of basis. 4 is equivalent to 5. We now show 4 implies 2. E(λj , T ) has dimension dj and basis
Bj = {v1j , v2j , . . . , v

dj

j }. We would like to check that all of these base elements are linearly independent.

m∑
j=1

dj∑
k=1

ajkv
k
j = 0

Since (
∑dj

k=1 ajkv
k
j ) ∈ E(λjT ) for each j,

dj∑
k=1

ajkv
k
j = 0

for each j. Thus,
ajk = 0 ∀j, k

so all of them are indpendent as desired, so they form a basis for the entire space, as desired. ■

Corollary. T ∈ L(V ), dimV = n has n distinct eigenvalues. Then T is diagonalizable.

16.1 Changing Bases

Lemma. B1, B2, B3 bases of V . S, T ∈ L(V ).

M(ST,B1, B3) =M(S,B2, B3)M(T,B1, B2)
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Example. w1 =
∑n

i=1 Pi1vi, w2 =
∑n

i=1 Pi2vi, etc, so wn =
∑n

i=1 Pinvi. We have

(w1, . . . , wn) = (v1, . . . , vn)


p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
...

pn1 pn2 . . . pnn


we have P =M(I,B2, B1).

Corollary. Consider B1, B2 bases of V . Then

M(I,B1, B2) · M(I,B1, B2) =M(I,B1, B1) = I

M(I,B1, B2) · M(I,B2, B1) =M(I,B2, B2) = I

Theorem. U , V two bases of W .
A =M(I, U, V )

then M(T,U) = A−1M(T, V ) ·A.

Proof.

M(T,U, V ) =M(TI, U, V )

=M(T, V, V )M(I, U, V )

=M(T, V ) ·A

M(T,U, V ) =M(IT, U, V )

=M(I, U, V )M(T,U, U)

= AM(T,U)

AM(T,U) =M(T, V )A⇒M(T,U) = A−1M(T, V )A
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17 Precept 6:

17.1 Change of Basis and Diagonalization

Example. Consider the reflection about the line spanned by

12
3

 ∈ R3. We call this the transformation

T : R3 → R3. We don’t know much about arbitrary vectors, but we do know about the vetors in the

plane perpendicular to

12
3

. The plane is defined by x+2y+3z = 0, since

12
3

 is the normal vector

to the plane. On this plane, any vector gets mapped to its additive inverse. For example, we know
immediately that

T

12
3

 =

12
3


T

−30
1

 = −

−30
1


T

−21
0

 = −

−21
0


Notice that the first vector above is an eigenvector with eigenvalue 1 and the second two are eigen-
vectors with eigenvalue -1. Also, notice that these three vectors form a basis for R3. We can now
write the matrix of the transformation with respect to these bases:

M(T, (v⃗1, v⃗2, v⃗3)) =

1 0 0
0 −1 0
0 0 −1

 = B

To find M(T, (e⃗1, e⃗2, e⃗3)), notice that we have a map B from the e⃗i to the λiei, and we can use

S =

1 −3 −2
2 0 1
3 1 0

 to transform from the λiei to the Tvi, and S−1 to go from the vi to the ei. In

other words,
M(T, (e1, e2, e3)) = SBS−1

17.2 An Eigenvalue/Eigenvector Example

Example (Exercises 5.C.16). We define the Fibonacci sequence as F1 = 1, F2 = 1, and Fn =
Fn−1 + Fn−2 for n ≥ 3. How do you write down a closed formula for Fn? The idea is that we can
use eigenvalues and eigenvectors to solve this problem. (I love this problem)
We are going to use the following linear operator: T ∈ L(R2), T (x, y) = (y, x+ y).

M(T ) =

[
0 1
1 1

]
We start with the following claim: Tn(0, 1) = (Fn, Fn+1) for all n > 0. We now induce on n
(smh apparently its induce but I like induct more). When n = 1, T 1(0, 1) = (1, 1) = (F1, F2) by
definition. Assume Tn−1(0, 1) = (Fn, Fn+1). Then Tn(0, 1) = T (Tn−1(0, 1)) = T ((Fn, Fn+1)) =
(Fn+1, Fn + Fn+1) = (Fn+1, Fn+2) as desired. Thus our claim is true. We now ask: what are the
eigenvalues of T?

T (x, y) = λ(x, y)
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(x, x+ y) = (λx, λy)

x = λx

x+ y = λy

x+ λx = λ2x⇒ 0 = (λ2 − λ− 1)x = 0

Since x = y = 0 does not yield a valid eigenvector, λ2 − λ− 1 = 0. We thus have

λ =
1±
√
1 + 4

2
=

1±
√
5

2

so we have two possible eigenvalues:

λ1 =
1 +
√
5

2
, λ2 =

1−
√
5

2

Consider v1 = (1,
1 +
√
5

2
). Then

Tv1 = λ1v1

so λ1 is an eigenvalue (left to the reader/watcher). Consider v2 = (1,
1−
√
5

2
). Then

Tv2 = λ2v2

so λ2 is an eigenvalue (left to the reader/watcher). We can now diagonalize T . The reason we want
to diagonalize T is that taking power with diagonal matrices is easy (whereas it is hard for arbitrary
matrices). For example, [

λ1
λ2

]n
=

[
λn1

λn2

]
For this T , v1 and v2 form a basis consisting of eigenvectors.
We now want to compute Tn(0, 1) using this basis/diagonalization. We have

M(T, (e1, e2)) =

[
0 1
1 1

]
= A

M(T, (v1, v2)) =

[
λ1 0
0 λ2

]
= B

We have
A = SBS−1

where S =

[
1 1
λ1 λ2

]
. Now,

An = (SBS−1)n = SBS−1SBS−1 . . . SBS−1 = SBIBI . . . IB = SBnS−1

We now have
Tn(0, 1) = An

[
0
1

]

=

[
1 1

1+
√
5

2
1−

√
5

2

][
( 1+

√
5

2 )n

( 1−
√
5

2 )n

][
5−

√
5

10
1√
5

5+
√
5

10 − 1√
5

] [
0
1

]

=

[ λn
1 −λn

2√
5

λn+1
1 −λn+2

2√
5

]
=

[
Fn

Fn+1

]

so Fn =
1√
5
((
1 +
√
5

2
)n − (

1−
√
5

2
)n).
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Example. Note that it is sometimes not possible to diagonalize. Consider the matrix1 1 0
0 1 0
0 0 3


Since this is an upper triangular matrix, the only possible eigenvalues are the values on the diagonal,
so 1 and 3. We now compute dimE(1, T ) + dimE(3, T ). Note that

E(1, T ) = ker

0 1 0
0 0 0
0 0 2


so dimE(1, T ) = 1. Also

E(3, T ) = ker

−2 1 0
0 −2 0
0 0 0


so dimE(3, T ) = 1. Thus, dimE(1, T ) + dimE(3, T ) = 1 + 1 ̸= dimR3, so the matrix is not
diagonalizable. Note that [

1 1
0 1

]
is the smallest example of a non-diagonalizable matrix.
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18 Lecture 13: Inner Product Space

Remark. In this section we will be discussing only C and R as our fields.

Definition (Normed Space). A vector space V is called a normed space if || · || : V → F satisfies the
following:

(1) ||v|| ≥ 0 with“=” if and only if v = 0.

(2) ||λ · v|| = |λ| · ||v|| for all λ ∈ F, v ∈ V .

(3) ||u+ v|| ≤ ||u||+ ||v|| for all u, v ∈ V .

Remark. d(u, v) def
= ||u− v|| is defined such that

(1) d(u, v) = d(v, u) for all u, v ∈ V

(2) d(u, v) ≥ 0, “=” if and only if u = v

(3) d(u, v) ≤ d(u, v) + d(v, w)

Example. V = Rn, ||v||p ≡ (
∑n

j=1 |vj |p)1/p, p ≥ 1. You should try to show the result by
Minkowski: (Minkowski inequality)

||u+ v||p ≤ ||u||p + ||v||p

Definition (Bilinear Form). A function φ : V × V → F is called a bilinear form if

(1) φ(u, ·) ∈ V ′ for all u ∈ V

(2) φ(·, v) ∈ V ′ for all v ∈ V

Example. V = Rn.

u · v def
=

n∑
j=1

ujvj

Definition. Let V be a vector space over R. A bilinear form ⟨ , ⟩ : V × V → R is called an
inner-product if

(1) ⟨v, v⟩ ≥ 0 for all v ∈ V , “=” if and only if v = 0.

(2) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V .

V is called an inner-product space.
Definition. Let V be a vector space over F. A function ⟨·, ·⟩ : V × V → F is called an inner-product

if

(!) For any u ∈ V , define Φu(v) ≡ ⟨v, u⟩ ∈ V ′

(2) ⟨v, v⟩ ≥ 0 for all v ∈ V , “=” if and only if v = 0

(3) ⟨v, u⟩ = ⟨u, v⟩ for all u, v ∈ V .

V is called an inner-product space.

Example. V = Cn.

u · v def
=

n∑
j=1

uj v̄j

This is called an Hermitian Product.
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We now define define the norm of an inner product space:

||v|| = ⟨v, v⟩ 12

Lemma. Consider V an inner product space.

(1) ⟨u, 0⟩ = ⟨0, u⟩ = 0 for all u ∈ V .

(2) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u+ w⟩ for all u, v, w ∈ V

(3) (u, λv) = λ̄⟨u, v⟩, for all u, v ∈ V , λ ∈ F.

(4) ||v|| = 0 if and only if v = 0.

(5) ||λ · v|| = |λ| · ||v||

Proof.

(1)

⟨0, u⟩ = ⟨v − v, u⟩ = ⟨v, u⟩ − ⟨v − u⟩ = 0

(2)

⟨u, v + w⟩ = ⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = ⟨u, v⟩+ ⟨u,w⟩

Definition (Orthagonality). We define u ⊥ v orthogonal if ⟨u, v⟩ = 0.

Lemma. 0 ∈ V is orthogonal to any vector, and 0 is the only vector which is orthogonal to itself.

Proof.
The first part follows from property one of the previous Lemma. The second part follows directly

from property 4 of the previous Lemma. ■

Theorem (Pythagorean Theorem). For any u ⊥ v,

||u+ v||2 = ||u||2 + ||v||2

Proof.

||u+ v||2 = ⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩ = ⟨u, u⟩+ ⟨v, v⟩ = ||u||2 + ||v||2

■

Theorem (Cauchy-Schwarz Inequality). |⟨u, v⟩| ≤ ||u|| · ||v||, with “=” if and only if u = λv for
some λ ∈ F.

Proof.

⟨u− λv, u− λv⟩ ≥ 0

for all λ ∈ F. The left hand side is

⟨u, u⟩ − λ⟨v, u⟩ − λ̄⟨u, v⟩+ |λ|2⟨v, v⟩

Lemma. Suppose ax2 + bx+ c ≥ 0, a > 0 is rue for all x ∈ R. Then b2 − 4ac ≤ 0.
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Using this lemma, if we work in R, then

|⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v, v⟩

which is the square of our desired result of the Cauchy Schwarz inequality. ■

Remark. Waw another really sweet proof of the Cauchy-Schwarz Inequality :heart_eyes:

Lemma. u, v ∈ V , λ ∈ F, v ̸= 0. w = u+ λv satisfies ⟨w, v⟩ = 0 if and only if λ = −⟨u, v⟩
||v||2

.

Proof.

⟨w, v⟩ = 0⇔ 0 = ⟨u, v⟩+ λ⟨v, v⟩

with v ̸= 0,

⇔ λ = −⟨u, v⟩
⟨v, v⟩

We can now show another proof of the Cauchy-Schwarz Inequality:
Proof.
u = w − λv implies that ||u||2 = ||w||2 + |λ|2||v||2 ≥ |λ|2|v||2. We now simply plug in the result from

the previous lemma to get the Cauchy Schwarz inequality. ■

Corollary. ∀u, v ∈ V ,
|||u|| − ||v||| ≤ ||u+ v|| ≤ ||u||+ ||v||

with equality if and only if u = λv for some λ ∈ F.

We only prove the second part.

⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩

≤ ⟨u, u⟩+ 2|⟨u, v⟩|+ ⟨v, v⟩

≤ ⟨u, u⟩+ 2||u|| · ||v||+ ⟨v, v⟩

= (||u||+ ||v||)2

Corollary. Any inner-product space is a normed space if ||v|| = ⟨v, v⟩ 12 for all v ∈ V .

Remark. If V is a vector space over R and we have a basis {e1, . . . , en}, and we write v, w in
components, v = (v1, . . . , vn) and w = (w1, . . . , wn).

⟨v, w⟩ = ⟨
n∑

j=1

vjej ,

n∑
k=1

wkek⟩ =
n∑

j,k=1

⟨ej , ek⟩vjwk

= (v1, . . . , vn)A

w1

...
wn


A = (aij), aij = ⟨ei, ej⟩

In the case of the dot product aij = δij , so A is the identity.

Diagram representing how abstract everything is:
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Metric Space

Normed Space

Inner Product Space
A specific example is the dot product for Rn.

Definition. A list of vectors B = {v1, . . . , vm} is orthonormal if ⟨vi, vj⟩ = δij for all 1 ≤ i, j ≤ m.

Lemma. e1, . . . , em orthonormal implies that

||
m∑
j=1

ajej ||2 =

m∑
j=1

|aj |2

for all aj ∈ F.

Corollary. e1, . . . , em are orthonormal implies that they are linearly independent.

Lemma. B = {e1, . . . , em} is an orthonormal basis of V . Then for all v ∈ V ,

(1) v =
∑m

j=1⟨v, ej⟩ej

(2) ||v||2 =
∑m

j=1⟨v1, ej⟩2

Proof.

v = a1e1 + a2e2 + . . .+ amem

For any 1 ≤ k ≤ m,

⟨v, ek⟩ = ⟨
m∑
j=1

ajej , ek⟩ =
m∑
j=1

aj⟨ej , ek⟩ =
m∑
j=1

ajδjk = ak

Part (2) follows from the Corollary. ■
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19 Lecture 15: Orthogonal Complements/Adjoint Operator
Let U ⊆ V .

U⊥ = {v ∈ V | ⟨v, u⟩ = 0 ∀u ∈ U}

Proposition. Let U ⊆ V with dimU <∞. Then V = U ⊕ U⊥.

Proof.
Let {e1, . . . , em} be an orthonormal basis of U . Then for all v ∈ V , we define

u =

m∑
j=1

⟨v, ej⟩ej

Now note that
⟨v − u, ek⟩ = ⟨v, ek⟩ − ⟨u, ek⟩ = ⟨v, ek⟩ − ⟨v, ek⟩ = 0

Thus v = u+ (v − u), so V = U + U⊥.

Lemma.

(1) If U ⊆ V is a subset, then U⊥ ⊆ V is a subspace.

(2) {0}⊥ = V

(3) V ⊥ = {0}

(4) If U ⊆ V , then U ∩ U⊥ = {0}

(5) U ⊆W ⇒W⊥ ⊆ U⊥

(1)

0 ∈ U⊥ by definition. Notice that U⊥ is closed under addition: if v, u ∈ U⊥, then

⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = 0 + 0 = 0

Notice that U⊥ is closed under scalar multiplication since v ∈ U⊥ ⇒ λv ∈ U⊥ for all λ ∈ F. Thus, U⊥

is a subspace. ■

Corollary. dimV <∞, U ⊆ V subspace. Then dimV = dimU = dimU⊥.

Corollary. Let U ⊆ V satisfy dimU <∞. Then (U⊥)⊥ = U .

Proof.
For all u ∈ U , ⟨u, v⟩ = ⟨v, u⟩ = 0 for all v ∈ U⊥, so u ∈ (U⊥)⊥. Thus U ⊆ (U⊥)⊥.
Taking any v ∈ (U⊥)⊥, v = u+ w, with u ∈ U and w ∈ U⊥.

0 = ⟨v, w⟩ = ⟨u,w⟩+ ⟨w,w⟩ = 0 + ⟨w,w⟩ = ⟨w,w⟩

so w = 0. Thus v = u ∈ U , so (U⊥)⊥ ⊆ U as desired. ■

Corollary. Assume dimV < ∞. Φ|U⊥ ∈ Hom(U⊥, U0) is a canonical isomorphism. Here Φ ∈
Hom(V, V ′). Φv(w) = ⟨w, v⟩.

In other words, the isomorphism Φ from V to V ′ is also an isomorphism between U⊥ and U0.
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Definition. Consider U ⊆ V , dimU < ∞. PU ∈ L(V ). PU (v) = U , v = u + w, with u ∈ U and
w ∈ U⊥.

Theorem. U ⊆ V , dimU <∞. Then for all v ∈ V , u ∈ U ,

||v − PU (v)|| ≤ ||v − u||

with equality holding if and only if u = PU (v).

Proof.

||v − PU (v)||2 ≤ ||v − PU (v)||2 + ||Pu(v)− u||2

= ||v − u||2

■

Example. Q([0, 2π]) = V , U = span(sinx, cosx, sin 2x, cos 2x). Inner product defined:

⟨f, g⟩ = 1

π

∫ 2π

0

f(x)g(x) dx

Given v(x) = x, find an element in U which minimizes the distance ||v − u|| for all u ∈ U .

1

π

∫ 2π

0

(sinx)2 dx =
1

π

∫ 2π

0

1− cos 2x

2
dx = 1

1

π

∫ 2π

0

(cosx)2 dx = 1

|| sin 2x|| = 1 = || cos 2x||∫ 2π

0

sin(mx) sin(nx) dx = 0

∫ 2π

0

sin(mx) cos(nx) dx =

∫ 2π

0

cos(mx) cos(nx) dx

PU (v) = a1 sinx+ b1 cosx+ a2 sin 2x+ b2 cos 2x

Note that ∫ 2π

0

x cos(mx) dx = 0∫ 2π

0

x sin(mx) dx = −2π

m

with ⟨v, sinmx⟩ = − 2

m
.

19.1 Adjoint Operators
Definition (Adjoint). Let T ∈ Hom(V,W ), T ∗ : W → V is called the adjoint of T if ⟨Tv,w⟩ =

⟨v, T ∗w⟩ for all v ∈ V,w ∈W .
T is self adjoint if T = T ∗.
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Lemma. T ∈ Hom(V,W ), S ∈ Hom(W,U), λ ∈ F. Then the following holds:

(1) T ∗ ∈ Hom(W,V )

(2) (S + T )∗ = S∗ + T ∗

(3) (λT )∗ = λT ∗

(4) (T ∗)∗ = T

(5) I∗ = I

(6) (ST )∗ = T ∗S∗ (here let T ∈ Hom(U, V ) and S ∈ Hom(V,W ))

Lemma. T ∈ (V,W ).

(1) Null T ∗ = (Range T )⊥

(2) Range T ∗ = (Null T )⊥

(3) Null T = (Range T ∗)⊥

(4) Range T = (Null T ∗)⊥

Definition. A = (aij) ∈ Fm,n. Its conjugate transpose B = (bij) ∈ Fn,m is defined by bij = aji.

Theorem. T ∈ Hom(V,W ), BV = {e1, . . . , em}, BW = {f1, . . . , fn} orthonormal. Then
M(T ∗, BW , BV ) is the conjugate transpose of M(T,BV , BW ).

Proof.

Tej =

n∑
i=1

⟨Tej , fi⟩fi

aij = ⟨Tej , fi⟩

bij = ⟨T ∗fj , ei⟩ = ⟨fj , T ei⟩ = ¯⟨Tei, fj⟩ = āji

■
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20 Lecture 16: Spectral Theorems
Definition (Self-Adjoint). T ∈ L(V ) is called self-adjoint if T = T ∗.

Lemma. T ∈ L(V ) is self-adjoint, then each eigenvalue of T is real.

Proof.
Suppose v ̸= 0 is an eigenvector such that Tv = λv.

λ⟨v, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ̄⟨v, v⟩.

Since ⟨v, v⟩ ≠ 0, λ = λ̄.
Consider T ∈ L(V ). T = 0⇔ ⟨Tv,w⟩ = 0 for all v, w ∈ V .
Facts (Polarization).

(1) F = R, T self-adjoint, then

⟨Tv,w⟩ = ⟨T (v + w), v + w)⟩ − ⟨T (v − w), v − w⟩
4

Proof.
⟨T (v + w), v + w⟩ = ⟨Tv, v⟩+ ⟨Tw,w⟩+ ⟨Tv,w⟩+ ⟨Tw, v⟩

⟨T (v − w), v − w⟩ = ⟨Tv, v⟩+ ⟨Tw,w⟩ − ⟨Tw, v⟩ − ⟨Tv,w⟩

difference = 4⟨Tv,w⟩

Remark. Substituting T = I to the above lemma, we get

⟨v, w⟩ = ||v + w||2 − ||v − w||2

4

(2) F = C, T ∈ L(V )

⟨Tv,w⟩ = ⟨T (v + w), v + w⟩ − ⟨T (v − w), v − w⟩
4

+ i
⟨T (v + iw), v + iw⟩ − ⟨T (v − iw), v − iw⟩

4

Lemma. V : inner product space over F, and T ∈ L(V ).

(1) Suppose F = R, T is self-adjoint. Then ⟨Tv, v⟩ = 0∀v ∈ V ⇒ T = 0.

(2) Suppose F = C, T ∈ L(V ). Then ⟨Tv, v⟩ = 0∀v ∈ V ⇒ T = 0.

Corollary. Suppose V is an inner product space over C, and T ∈ L(V ). Then

T self-adjoint ⇔ ⟨Tv, v⟩ ∈ R

Proof.

⟨Tv, v⟩ − ⟨Tv, v⟩ = ⟨Tv, v⟩ − ⟨v, Tv⟩
= ⟨Tv, v⟩ − ⟨T ∗v, v⟩
= ⟨(T − T ∗)v, v⟩

⟨Tv, v⟩ ∈ R⇔ ⟨Tv, v⟩ − ⟨Tv, v⟩ = 0

⇔ ⟨(T − T ∗)v, v⟩ = 0 ∀v ∈ V
⇔ T = T ∗
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■

Definition (Normal). T ∈ L(V ) is Normal if TT ∗ = T ∗T .

Lemma. T ∈ L(V ) is normal. Then ||Tv|| = ||T ∗v|| for all v ∈ V .

Proof.
⟨Tv, Tv⟩ = ⟨v, T ∗Tv⟩ = ⟨v, TT ∗v⟩ = ⟨T ∗v, T ∗v⟩.

■

Lemma. Suppose T ∈ L(V ) is normal. Let v ̸= 0 satisfy Tv = λv for some λ ∈ F. Then T ∗v = λ̄v.

Proof.
||(T − λI)v|| = ||(T ∗ − λ̄I)v||

v is in an eigenvector of T with respect to λ is equivalent to v being an eigenvector of T ∗ with respect
to λ̄. ■

Lemma. Suppose T ∈ L(V ) is normal. Take λ ̸= µ different eigenvalues, and let v and w be their
corresponding eigenvectors. {

Tv = λv,
Tw = µw

⇒ v ⊥ w

Proof.

λ⟨v, w⟩ − µ⟨v, w⟩

= ⟨λv,w⟩ − ⟨v, µ̄w⟩

= ⟨Tv,w⟩ − ⟨v, T ∗, w⟩

= 0

Since λ ̸= µ, we can multiply both sides by (λ− µ)−1, so ⟨v, w⟩ = 0, and v and w are perpendicular as
desired. ■

We can now get into Spectral Theorems. Take T ∈ L(V ). S = {λ1, . . . , λm⟩ with λ1, . . . , λm
eigenvalues is the spectrum of T .

Remark. The spectrum of T is like the soul or ghost of T .

Theorem (Complex Spectrum). Consider T ∈ L(v), F = C. Then the following are equivalent:

(1) T is normal

(2) V has an orthonormal basis B consisting of eigenvectors of T

(3) V has an orthonormal basis B such that M(T,B) is diagonal

We now consider the matrix version.
Definition (Matrix Similarity). We say T ∼ S (similar) if ∃ an invertible matrix P such that

T = P−1SP .
Then we are saying that there exists a matrix similar to the matrix of T that is diagonal.
We now complete the proof of this theorem.
Proof.

60



By Schur’s Theorem, there exists an orthonormal basis B such that

M(T,B) =



a11 a12 . . . . . . a1n
0 a22 . . . . . . a2n

0 0
. . .

...
...

...
. . .

...
0 0 . . . . . . ann


The jth column of the above matrix corresponds to Tej .

||T ∗e1||2 = ||Te1||2,
n∑

j=1

|a1j |2 = |a11|2

|a11|2 + |a12|2 + . . .+ |a1n|2 = |a11|2

||T ∗e2||2 = ||Te2||2

||T ∗e2||2 = ||Te2||2,
n∑

j=2

|a2j |2 = |a22|2

|a23|2 + . . .+ |a2n|2 = 0

so the matrix is diagonal.

Theorem (Real Spectrum). Consider T ∈ L(V ), F = R. Then the following are equivalent:

(1) T is self-adjoint

(2) V has an orthonormal basis B consisting of eigenvectors of T

(3) V has an orthonormal basis B such that M(T,B) is diagonal

Lemma. T ∈ L(V ) self-adjoint, b, c ∈ R such that b2 − 4c < 0. Then T 2 + bT + cI is invertible.

Proof.
⟨(T 2 + bT + cI⟩v, v⟩

= ⟨Tv, Tv⟩+ b⟨Tv, v⟩+ c⟨v, v⟩

≥ ||Tv||2 − b||Tv||||v||+ c||v||2

= ||v||2
((
||Tv||
||v||

)2

− b
(
||Tv||
||v||

)
+ c

)
Note that x2 − bx + c > 0 for all x ∈ R if b2 − 4c < 0. Thus, the above expression is greater than 0.
Thus, if the above is zero, then v = 0, so T 2 + bT + cI is injective and thus invertible as desired. ■

Proposition. Consider T ∈ L(V ) self-adjoint. T has an eigenvalue.

Proof.
Considering v ̸= 0, v, Tv, T 2v, . . . , Tnv is linearly dependent. Thus, there exist not all zero numbers

aj such that
n∑

j=0

ajT
jv = 0

In other words, there exists some polynomial p such that

p(T )v = 0, p(T ) =

n∑
j=0

ajT
j
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Recall that for any real polynomia,

p(x) = cΠk
j=1(x

2 − bjx+ cj)Π
m
i=1(x− λi)

with b2j − 4cj < 0 for all j. We also have k+m ≥ 1. Then all the quadratic factors are invertible, so one
of the linear factors must not be invertible, giving us an eigenvalue. ■

Lemma. Consider T ∈ L(V ) a self-adjoint transformation, and consider an invarient subspace U .
Then

(1) U⊥ is invariant under T

(2) T |U is self-adjoint

(3) T |U⊥ is self-adjoint

Proof.

(1) w ∈ U⊥, u ∈ U , ⟨Tw, u⟩ = ⟨w, Tu⟩ = 0

(1) ⇒ (2) Te1 = λ1e1, U1 = span{e1}, T |U⊥
1

is self-adjoint. This gives us another eigenvector e2. We continue
this process.
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21 Lecture 18: Polar/Singular Value Decomposition

Theorem (Polar Decomposition). Suppose T ∈ L(V ). Then ∃ an isometry such that T = S·
√
T ∗T .

Remark. Since T ∗T is self-adjoint, it is diagonalizable, so it is a dialation. The above theorem says
that we can break any transformation T into an isometry S and a dialation

√
T ∗T .

Theorem (Singular Value Decomposition). Given T ∈ L(V ) with singular values s1, . . . , sn, ∃
orthonormal bases B1 = {e1, . . . , en} and B2 = {f1, . . . , fn} such that Tv =

∑n
j=1 sj⟨, ej⟩fj .

T̂ =M(T,B1, B2) =

s1 . . . 0
...

. . .
...

0 . . . sn



Theorem (Spectral Theorem). For any self-adjoint operator T ∈ Rm,n, there exists an orthogonal
matrix P ∈ Rn,n such that T = PDP−1 and

D =

λ1 . . . 0
...

. . .
...

0 . . . λn



Remark. This is basically saying there is a change of base P from T to D.

Definition (Unitary, Orthogonal). V = Cn, P is called a unitary matrix if PP ∗ = P ∗P = I. V ∈ Rn,
P is called an orthogonal matrix if PPT = PTP = I.

Theorem (Matrix Version of the Singular Value Decomposition). If (e1, . . . , en) = (v1, . . . , vn)V
and (f1, . . . , fn) = (v1 . . . , vn)U then T̂ = UΣV −1.

Theorem. T ∈ L(V ). M1 =M(T,B1), M2 =M(T,B2). B1 = {e1, . . . , en}, B2 = {f1, . . . , fn}.
B0 = {v1, . . . , vn}.

(e1, . . . , en) = (v1, . . . , vn)P, (f1, . . . , fn) = (v1, . . . , vn)Q

Then
M2 = Q−1M1P

Proof.
We define Q =

√
T ∗T with Qej = sjej . By applying the polar decomposition, there exists an isometry

S such that T = SQ. We define fj = Sej .

Tei = SQei = S(siei) = siS(ei) = sifi

as desired. ■

Lemma 1. Given T ∈ L(V ), then ||Tv|| = ||
√
T ∗Tv||.

Proof.

⟨
√
T ∗Tv,

√
T ∗Tv⟩ = ⟨v, T ∗Tv⟩ = ⟨Tv, Tv⟩
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■

We have shown that there is an isometry from the range of
√
T ∗T to T given by Ŝ(

√
T ∗Tv)

def
= Tv.

Note that since
||Ŝ(
√
T ∗Tv)− Ŝ(

√
T ∗Tw)|| = ||

√
T ∗Tv −

√
T ∗Tw|| = 0

By definition, Ŝ is also surjective.

Lemma 2. Suppose we have two inner product spaces with dimV = dimW . Let V1 ⊂ V , W1 ⊂W
with dimV1 = dimW1. Then any isometry T̂ from V1 to W1 extends to an isometry T from V to
W .

Proof.
Consider B1 = {e1, . . . , em} an orthonormal basis of V ⊥

1 . Consider B2 = {f1, . . . , fm} an orthonormal
basis of W⊥

1 . Define Q̂ mapping from V ⊥
1 to W⊥

1 by Q̂(ej) = fj . V = V1 ⊕ V ⊥
1 , W =W1 ⊕W⊥

1 .

Tv = T (u+ w) = T̂ u+ Q̂w

where u ∈ V1 and w ∈ V ⊥
1 . Then T : V →W is an isometry.

We now prove the Polar Decomposition Theorem.
Proof.

dim(Range
√
T ∗T ) = dim(Raneg T ) + dim(Null Ŝ)

Since Ŝ is injective (since it is an isometry), dim(Range
√
T ∗T ) = dim(Range T ), we can apply Theorem

2 so Ŝ extends to an isometry S from V to V as desired. ■
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22 Linear Operators on Complex Vector Spaces
A blocked diagonal matrix is a matrix that is diagonal but the things on the diagonals are square

matrices of the same dimension. Example:

A =


1 2 0 0
3 4 0 0
0 0 5 6
0 0 7 8


We would like to represent any transfrmation T as

T = P−1SP

where S is a blocked diagonal matrix.

Lemma. T ∈ L(V ). Then

{0} = Null T 0 ⊆ Null T 1 ⊆ Null T 2 ⊆ . . .

Proof.
We show this via induction. For the base case, Null T 0 = {0} ⊆ Null T 1, and for all k, if T k(v) = 0,

then T k+1(v) = T (T k(v)) = T (0) = 0 so Null T k ⊆ Null T k+1 so the result follows via induction as
desired. ■

Proposition. Consider T ∈ L(V ). If Null Tm = Null Tm+1, then for any k ∈ Z+, Null Tm =
Null Tm+k.

Proof.
We only prove that Null Tn+k ⊆ Null Tm. Let v ∈ V such that Tm+k(v).

0 = Tm+k(v) = Tm+1(T k−1(v))⇒ T k−1(v) ∈ Null Tm+1 ⊆ Null Tm

Thus Tm(T k−1(v)) = 0 = Tm+k−1(v) = 0. By induction, Tm+0(v) = 0, so Null Tm+k ⊆ Null Tm as
desired. ■

Proposition. Let T ∈ L(V ) with dimV = n. Then Null Tn = Null Tn+1 = Null Tn+2 . . ..

Proof.
We do a proof by contradiction. Suppose Null Tn ⊂ Null Tn+1. By the previous propositions proof,

{0} = Null T 0 ⊂ Null T 1 ⊂ . . . ⊂ Null Tn ⊂ Null Tn+1

However, this means that n ≤ dimNull Tn < dimNull Tn+1 a contradiction. Thus Null Tn ⊇ Null Tn+1

and we are done by the proposition. ■

Corollary. Consider T ∈ L(V ) with dimV = n. Then

V = Null Tn ⊕ Range Tn

Remark. Do we know when a transformation T has an nth root for n ∈ N?

Proof.
WE only need to check Null Tn ∩ Range Tn = {0}. Let u ∈ Null Tn ∩ Range Tn ⇒ Tnu = 0,

u = Tnv. Then T 2nv = 0 so v ∈ Null T 2n. However, by the previous proposition, Null T 2n = Null Tn,

65



so Tnv = 0. Thus u = 0 as desired. ■

Definition (Generalized Eigenvector). Consider T ∈ L(V ) with an eigenvalue λ. Given any j ∈ Z+,
a solution v ̸= 0 of (T − λI)jv = 0 is called generalized eigenvector.

Given any arbitrary eigenvalue λ, the set of all generalized eigenvectors of λ and 0 ∈ V is called the
generalized eigenspace with notation G(λ, T ).

Lemma. Consider T inL(V ) with λ an eigenvalue. Then

G(λ, T ) = Null
(
(T − λI)dimV

)
Proof.
Taking any v ∈ G(λ, T ). Then ∃j such that v ∈ Null

(
(T − λI)j

)
.

Case 1. j < dimV
Then

Null
(
(T − λI)j

)
⊆ Null

(
(T − λI)j+1

)
⊆ . . . ⊆ Null

(
(T − λI)dimV

)
= Null

(
(T − λI)dimV+1)

)
= . . .

Case 2. j ≥ dimV
Then Null ((T − λI))j = Null

(
(T − λI)dimV

)
.

In both cases, Null
(
(T − λI)j

)
⊆ Null

(
(T − λI)dimV

)
as desired. ■

Proposition. Consider T ∈ L(V ). Consider λ1, . . . , λn distinct eigenvalues with corresponding
v1, . . . , vn generalized eigenvectors. Then v1, . . . , vm are linearly independent.

Proof.

0 = a1v1 + . . .+ anvn

Let k be the largest integer (which exists from the previous theorems) such that (T − λI)kv1 ̸= 0. Then
(T − λ1I)k+1v1 = 0. We denote w1 = (T − λI)kv1.

(T − λ1I)w1 = 0

so Tw1 = λ1w1. Let (T − λ1I)k
∏n

j=2(T − λjI)n act on 0 = a1v1 + . . .+ anvn.

a1

n∏
j=2

(T − λjI)nw1 + 0 + . . .+ 0 = 0

so a1 = 0. Similarly for the other coefficients. ■

Corollary. Consider λ1, . . . , λn distinct eigenvalues. Then
∑n

j=1G(λj , T ) is a direct sum.

Definition (Nilpotent). T ∈ L(V ) is nilpotent if Tm = 0 for some m ∈ Z+.

Remark. Nilpotent is Prof. Ruobing’s favorite word.

Lemma. If N ∈ L(V ) is nilpotent, then NdimV = 0.

Proof follows pretty quickly from previous lemmas.

Proposition. LEt N ∈ L(V ) be nilpotent. Then V has a basis B such that M(N,B) = (aij)
satisfies aij = 0 when i ≥ j.

66



Remark. The lower triangular part is the zero part.

Proof.
B1 = {v11, . . . , v1k} basis of Null N . Extend B1 to B2 which is a basis of Null N2. After finite steps,

we obtain a basis B of V . Example: suppose v1, v2 ∈ B1, v1, v2, v3 ∈ B2, v1, v2, v3, v4 ∈ B3. Notice that
N(v1) = N(v2) = 0. N(v3) ∈ Null N , so v3 can be generated by v1, v2. N(v4) ∈ Null N2, so v4 can be
generated by v1, v2, v3. etc.

Lemma. Consider T ∈ L(V ), p ∈ P(F). Then ker p(T ), Im p(T ) are invariant under T .

Remark. I’m switching to ker and Im because it’s faster.

Proof.
Consider v ∈ ker p(T ), so p(T )v = 0. Then (since p1(T )p2(T ) = p2(T )p1(T ))

Tp(T )v = p(T )(Tv) = 0

■

Proposition. Consider T ∈ L(V ), and λ1, . . . , λm is a spectrum of T .

(1) V =
⊕m

j=1G(λj , T )

(2) Each G(λj , T ) is invariant under T

(3) Every (T − λjI)|G(λj ,T ) is nilpotent.

Proof.

(1)

We will prove G(λj , TU ) = G(λj , T ).
We start by showing that G(λj , TU ) ≥ G(λj , T ). Taking any v ∈ G(λj , T ) ⊆ V ,

v = v1 + v2 + . . .+ vm

where vi ∈ G(λi, T |U ). Generalized eigenvactors are linearly independent, so v1 = 0, vi = 0 if i ̸= j so
We induce on n = dimV . For n = 1, it is trivial. Assume the result holds for any V with dimV < n.
For λ1,

V = ker(T − λ1I)n ⊕ Im(T − λ1I)n

= G(λ1, T )⊕ U

Then dimU < n, so U is invariant under T by the inductive hypothesis.

V = G(λ1, I)⊕ (

n⊕
j=2

G(λjT |U ))

v = vj .

(2)

G(λj , T ) = Null(T − λjI)dimV is invariant under T .

(3)

By definition.
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23 Lecture : Blocked Diagonal Decomposition

Proposition. Consider V a complex vector space, and T ∈ L(V ) with spectrum {λ1, . . . , λm}. Then

(1) V = G(λ1, T )⊕G(λ2, T )⊕ . . .⊕G(λm, T )

(2) G(λj , T ) is invariant under T

(3) (T − λjI)|G(λj ,T ) is nilpotent

Definition (Multiplicity). Consider T ∈ L(V ), with λi an eigenvalue of T . Then algebraic multi-
plicity of λ is dimG(λ, T ) = dimNull (T − λI)dimV . The geometric multiplicity of λ = dimE(λ, T ) =
dimNull (T − λI).

Corollary. Consider V with dimV = n. Then the sum of the algebraic multiplicities is equal to n.

Theorem. Consider V a complex space, with T ∈ L(V ) with spectrum λ1, . . . , λm. Let the multi-
plicity of λj be dj . Then V has a basis consisting of generalized eigenvectors such that

M(T,B) =

A1 . . . 0
...

. . .
...

0 . . . Am


where

A =


λj
0 λj
...

...
. . .

0 0 0 λj


is a dj by dj matrix.

Proof.
To understand teh structure of Aj , Consider T |G(λj ,T ), the result when T is restricted to G(λj , T ).

T |G(λj ,T ) = (T − λj)|G(λj ,T ) + λjI|G(λj ,T )

By the Proposition, (T −λj)|G(λj ,T ) is nilpotent, which immediately gives the result (by the proposition
from the last lecture). ■

Example. Consider

A =

1 2 3
0 1 1
0 0 2


with eigenvalues 1, 2.

Remark. Can’t we use column reduction? Never mind, no mayyybe not.

G(1, A) = span((1, 0, 0), (0, 1, 0)) G(2, A) = span((5, 1, 1))

V = G(1, A)⊕G(2, A)

M(A,B) = P−1AP =

1 2 0
0 1 0
0 0 2


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Lemma. If N ∈ L(V ) is nilpotent, then I +N has a square root.

Motivation: Recall the taylor expansion:
√
1 + x = 1 +

x

2
+O(x2)

Proof. Suppose Nm = 0. We write

R = I + a1N + a2N
2 + . . .+ am−1N

m−1

Then

R2 = I + 2a1N + (a21 + 2a2)N
2 + (2a3 + 2a1a2)N

3 + . . .+ (2am−1 + p(a1, . . . , am−2))

We can now inductively solve this system so that a1 =
1

2
, and each coefficient of further powers of N is

zero in the above. ■

Proposition. Consider complex vector space V , and T ∈ L(V ) invertible. Then T has a square root.

Proof.

V = G(λ1, T )⊕ . . .⊕G(λm, T )

where λj ̸= 0 for all j. On each G(λj , T ),

T |G(λj ,T ) = (T − λjI)|G(λj ,t) + λjI|G(λj ,T )

= λj(λ
−1
j (T − λjI)|G(λj ,T ) + I)

(λ−1
j exists since T is invertible) where the expression in the parenthesis is nilpotent. By the previous

lemma, Rj = square root of T |G(λj ,T ) exists. We define for v = v1+ . . .+ vm with vj ∈ G(λj , T ) for each
j,

Rv = R1v1 + . . .+Rmvm

then R is a square root of T since

R2v = R2
1v1 + . . .+R2

mvm = Tv

■

Definition (Characteristic Polynomial). Let V be a complex vector space with T ∈ L(V ) and
λ1, . . . , λm a spectrum of T with distinct eigenvalues with multiplicities d1, . . . , dm. Then polynomial
p(z) = (z − λ1)d1 · . . . · (z − λm)dm is called the characteristic polynomial.

Remark. :heart_eyes: :heart_eyes: :heart_eyes:

Remark. If dimV = n, then deg(p(z)) = n.

Theorem (Cayley-Hamilton). Consider a complex vector space V with T ∈ L(V ). If q(z) is the
characterisitc polynomial, then q(T ) = 0.

Proof.

V = G(λ1, T )⊕ . . .⊕G(λm, T )

For v ∈ V , v = v1 + . . .+ vm with vj ∈ G(λj , T ),

p(T )(v) = p(T )(v1) + . . .+ p(T )(vm)
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But p(T )vj = (. . .)(T − λjI)djvj = 0, which gives us the desired result. ■

Lemma. Consider T ∈ L(V ) with dimV = n. Then there exists a unique monic polynomial p of
smallest degree such that p(T ) = 0.

Proof.
Consider {I, T, T 2, . . . , Tn2}. Since dimL(V ) = n2 < n2 + 1, the list above is linearly dependent.

Let m be the smallest integer such that {I, T, T 2, . . . , Tm} is linearly dependent. Then there exists
coefficients not all zero such that

m−1∑
j=0

ajT
j + Tm = 0

We define q(z) =
∑m−1

j=0 ajz
j + zm. Suppose q̂(z) =

∑m−1
j=0 bjz

j + zm. Then

(q − qj)(z) =
m−1∑
j=0

(aj − bj)zj

Then
m−1∑
j=0

(aj − bj)T j = 0

however this is a contradiction of m being the lowest degree. Thus, q = q̂. ■

The monic polynomial from the above lemma is called the minimal polynomial.

Lemma. Consider T ∈ L(V ) and q ∈ P(F). Then q(T ) = 0 if and only if q is a polynomial multiple
of the minimal polynomial p.

Proof.
The if part is trivial. Otherwise, let q = r ·p+h where h has as smaller degree than p. Then h(T ) = 0,

but this is a contradiction. ■

Corollary. Consider T ∈ L(V ) and p the characteristic polynomial, with q the minimal polynomial.
Then ∃r ∈ P(F) such that p = rq.

Proposition. Let T ∈ L(V ). Then the zeros of the minimal polynomial p are precisely the eigenvalues
of T .

Proof.

(1)

Suppose λ is a zero. Then p(z) = (z − λ)q(z), so

0 = p(T )v = (T − λI)(q(T )v)

But q(T )v must not be zero for some v since that would contradict minimality.

(2)

If λ is an eigenvalue, then

p(T )v =

m∑
j=0

(ajT
j)v =

m∑
j=0

aj(λ)
jv = p(λ)v
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24 Precept : Jordan Form
Consider F = C and V = C3.

Example. T : V → V is linear, Tv = Av where A =

−1 0 1
0 2 −1
−4 0 3

. We can write V =

G(λ1, T )⊕ . . .⊕G(λm, T ).
Notice that 2 is an eigenvalue corresponding to (0, 1, 0). Observe that E(2, T ) = ker(A − 2I) =
span(e2).
Now we would like to find other eigenvalues. We will follow 5.21 (and compare this to Problem A
from PSet 10 after class).
Notice that with e1 = (1, 0, 0), Te1 = (−1, 0, 4), T 2e1 = (−3, 4,−8), T 3e1 = (−5, 16,−12). Then

0 = −2e1 + 5Te1 − 4T 2e1 + T 3e1

Define p(x) = −2 + 5x− 4x2 + x3. Then p(T )e1 = 0. Note that p(x) = (x− 1)2(x− 2). We now
check λ = 1:

ker(A− I) = ker

−2 0 1
0 1 −1
−4 0 2


= span(

12
2

)
so 1 is an eigenvalue. (This is an alternative way of checking that 1 is an eigenvalue). We have

E(1, T ) = span(

12
2

).
We now consider generalized eigenspaces. Notice that

G(1, T )⊕G(2, T ) ⊆ V ⇒ dimG(1, T ) + dimG(2, T ) ≤ dimV = 3

Thus each eigenspace has dimension between 1 and 2. In other words,

G(1, T ) = ker(A− I)2

G(2, T ) = ker(A− 2I)2

Notice that

ker(A− I)2 = ker

0 0 0
4 1 −3
0 0 0


= span(

 1
−4
0

 ,
03
1

)
so dimG(1, T ) = 2 and dimG(2, T ) = 1. Notice that we didn’t actually have to notice that
G(1, T ) = ker(A− I)2. Even if we had picked 2 arbitrarily, we would have found dimG(1, T ) ≥ 2⇒
dimG(1, T ) = 2.
We now find the characteristic polynomial: (x − 1)2(x − 2). The minimal polynomial divides the
characteristic polynomial. Also, the minimal polynomial and the characteristic polynomial have the
same set of roots. Thus, the minimal polynomial is either (x− 1)(x− 2) or (x− 1)2(x− 2).
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Example (8.C.12). T being diagonal is equivalent to the minimal polynomial has no repeated roots.
Notice that [

1 1
0 1

]
has minimal polynomial (x− 1)2 but [

1 0
0 1

]
has minimal polynomial (x− 1).

Example. Going back to the original example, the minimal polynomial is (x− 1)2(x− 2).

Example. 0 1 0
0 0 1
0 0 0


has minimal polynomial x3 0 1 0

0 0 0
0 0 0


has minimal polynomial x2 0 0 0

0 0 0
0 0 0


has minimal polynomial x.
Notice that the following two matrices have the same minimal and characteristic polynomials:

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



Example (8.C.15). Consider T , v ̸= 0 ∈ V . Then

(1) There exists a smallest monic polynomial p such that p(T )v = 0

(2) p is a factor of the minimal polynomial

In the previous example, (x−1)2(x−2) is the minimal polynomial for T and e1, so (x−1)2(x−2)
is a factor of the minimal polynomial of T . Thus the characteristic polnomial is q · (x− 1)2(x− 2)
in the above polynomial, but they m
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Theorem. Consider V a complex space, with T ∈ L(V ) with spectrum λ1, . . . , λm. Let the multi-
plicity of λj be dj . Then V has a basis consisting of generalized eigenvectors such that

M(T,B) =

A1 . . . 0
...

. . .
...

0 . . . Am


where

A =


λj
0 λj
...

...
. . .

0 0 0 λj


is a dj by dj matrix.

A matrix of the form with a diagonal containing the eigenvalue and the diagonal above having all 1s
is called a Jordan block. A basis as in the above theorem is called a Jordan basis.

Example.

M =

λ 1 0
0 λ 1
0 0 λ

 , M =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


are Jordan blocks. Notice that in the first case above,

Tv1 − λv1 = 0

Tv2 − λv2 = v1

Tv3 − λv3 = v2

so {v3, (T − λI)v3, (T − λI)2v3} is a basis, and notice that (T − λI)3v3 = 0.

Theorem. Any matrix T ∈ Cn,n is similar to its Jordan canonical form, i.e., ∃ an invertible matrix P
such that

P−1AP =

A1 . . . 0
...

. . .
...

0 . . . Am


where Aj is a Jordan block.

Proof (using the Proposition below).
Consider V = G(λ1, T )⊕ . . .⊕G(λm, T ). We denote

Nj = (T − λjI)|G(λj ,T )

nilpotent. Then applying the Proposition, each block with respect to G(λj , T ) is a Nilpotent block. Thus
Aj = Nj + λjI which gives us the desired result. ■

Proposition. N ∈ L(V ) is nilpotent, then there exists {v1, . . . , vm} ⊆ V and {k1, . . . , km} ⊆ N0

such that

(1) B = {Nk1v1, . . . , N
2v1, Nv1, v1, N

k2v2, . . . , N
2v2, Nv2, v2, . . . , N

kmvm, . . . , N
2vm, Nvm, vm}

is a basis of V

(2) Nkj+1vj = 0 for all 1 ≤ j ≤ m
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Proof.
We show this by induction on n = dimV . For the base case n = 1, it is trivial. Suppose the

conclusion holds for any V with dimV < n. Consider V with dimV = n. Taking any nilpotent operator
N ∈ L(V ), with N not injective (⇔ N is not surjective). Thus dim(Range N) ≤ n− 1, so we can apply
the inductive hypothesis on Range N . Notice that Range N is invariant under N . Denote N̂ = NRange N .
N̂ is nilpotent. By the induction hypothesis, there exists a basis

B̂ = {Nk1v1, N
k1−1v1, . . . , Nv1, v1, N

k2v2, . . . N
klvl, N

kl−1vl, . . . , Nvl, vl

of Range N . Notice that vj = Nuj for some uj since vj ∈ Range N . Then consider the basis:

ˆ̂
B = {Nk1+1u1, . . . , Nu1, u1, . . . , . . . , N

kl+1ul, . . . , Nul, ul}

Note that N ˆ̂
B = B̂ (by (2)). Now consider aij .

l∑
j=1

kj+1∑
i=0

aijN
iuj = 0

Apply N to both sides. Then
l∑

j=1

kj+1∑
i=0

aijN
ivj = 0

Then we have aij = 0 for all 1 ≤ j ≤ l and 0 ≤ i ≤ kj by the inductive hypothesis since Nkj+1vj = 0 by
(2). Thus

l∑
j=1

akj+1,jN
kj+1uj = 0

l∑
j=1

akj+1,jN
kjvj = 0

Thus akj+1,j = 0 for all j. Thus aij = 0 fir all i, j, so ˆ̂
B is a linearly independent list. Then ˆ̂

B can be
extended to a basis of V

B̃ =
ˆ̂
B ∪ {w1, . . . , wp}

Observe that for all wj , Nwj ∈ Range N , so there exists xj ∈ span( ˆ̂B) such that Nxj = Nwj . We define
ζj = wj − xj . Nζj = 0 for all j. Then

˜̃B =
ˆ̂
N ∪ {ζ1, . . . , ζp}

is also a basis, and it satisfies (1) and (2) as desired. By induction, the result is true. ■

A =

1 2 3
0 1 1
0 0 3


We can find that dimE(1, A) = 1, dimG(1, A) = 2, dimE(3, A) = dimG(3, A) = 1. Then

J =

1 1 0
0 1 0
0 0 3


and we can find P such that P−1AP by working out that if the basis is v1, w, v2, then Aw = w+ v1.
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24.1 Trace
Definition (Trace). Consider A = (aij) ∈ Fn,n. Then Tr(A) =

∑
i=1 6naii.

For a complex vector space this is the sum of the eigenvalues counted with multiplicities.

Lemma. Consider A,B ∈ Fn,n. Then Tr(AB) = Tr(BA).

Proof.

(AB)ij =

n∑
k=1

aikbkj

(BA)ij =

n∑
k=1

bijakj

Then it follows quickly. ■

Proposition. Consider T ∈ L(V ). Consider two bases A,B. Then Tr(M(T,A)) = Tr(M(T,B)).

Proof.
Notice that Tr (M(T,B)) = Tr (P−1M(T,A)P ) = Tr (M(T,A)PP−1) = Tr (M(T,A)). ■

Theorem. Consider T ∈ L(V ). Then Tr (T ) = Tr (M(T,B)) for all bases B of V .
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25 Lecture : Tensor Product of Vector Spaces
Definition (k-linear). A map φ : V1 × . . .× Vk → V is called k -linear if φ(v1, . . . , vi, . . . , vk) is linear

for eery vi as fixing all variables but vi to be constant.

Example. φ(u, v) bilinear. On real vector spaces, inner product spaces are bilinear maps.

Definition (Tensor Product). For all vector spaces U and for all bilinear maps f : (V ×W ) → U ,
then there exists a linear map

f : V ⊗W → U

such that f(v⊗w) = f(v, w). The diagram formed by V ×W , V ⊗W , and U with ⊗, f , and f commutes.

Remark. In category theory, we have a unique element with this universal property such that for all
other elements, we can push forward the special element to that. The above definition satisfies that.

The first most natural question is: dess V ⊗W exist?

Lemma. If tensor products exist, then they are unique up to an isomorphism.

Proof.
Suppose there exist two tensor products V ⊗W,V ⊗̃W . By the universal property, there exists a

unique linear map φ : V ⊗W → V ⊗̃W such that

⊗̃ = φ ◦ ⊗

Similarly, there exists a unique linear map ψ : V ⊗̃W → V ⊗W such that

⊗ = ψ ◦ ⊗̃

Then ⊗ = ψ ◦ ϕ ◦ ⊗. Now,
Thus ψ ◦ ϕ = I, so both are isomorphisms as desired.
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26 Precept: Missed
I unfortunately missed this precept (hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh-

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
ugh I wish I could’ve gone) and learned the material from the notes posted afterwards.

Therefore, this memory will be absent from my notes . . . ;(
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27 Lecture : Wedge Product, Determinant

Proposition. Let {e1, . . . , en} be a basis of V . Then

(1) {ei1 ⊗ . . .⊗ eik | 1 ≤ i1, . . . , ek ≤ n} basis of V ⊗k

(2) {ei1 ∧ . . . ∧ eik | 1 ≤ i1 <, . . . , < ek ≤ n} basis of V ⊗k

Definition (Tensor Product of Linear Functionals). φ,ψ ∈ L(V,R), then φ⊗ ψ ∈M2(V,R) with

φ⊗ ψ(v, w) def
= φ(v) · ψ(w)

Definition (Wedge Product of Linear Functionals). φ,ψ ∈ A2(V,F), then

φ ∧ ψ(v, w) def
= φ(v) · ψ(w)− φ(w)ψ(v)

Proof.

(1)

For k = 2, if T ∈M2(V,F), then

v =

n∑
i=1

aiei =
∑

φi(v)ei

w =

n∑
i=1

biei =
∑

ψi(w)ei

T (v, w) =

n∑
i,j=1

T (φi(v)ei, φj(w)ej)

=

n∑
i,j=1

T (ei, ej)φi(v)φj(w)

=

n∑
i,j=1

T (ei, ej)φi ⊗ φj(v, w)

T =
∑

T (ei, ej)φi ⊗ φj

We want to show that
n∑

i,j=1

aijφi ⊗ φj = 0

implies that aij = 0 for all i and j.

0 =

n∑
i,j=1

aijφi ⊗ φj(ek, el)

=

n∑
i,j=1

aijδikδjl = akl

Then {φi⊗φj}ni,j=1 a basis of M2(V,F) maps to a basis {ei⊗ej}ni,j=1 a basis of V ⊗V under the canonical
transformation. ■

(2)
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For n = 3, k = 2, L(V ∧ V,F) ∼= A2(V × v,F). If T ∈ A2(V × V,F),

3∑
i,j=1

T (ei, ej)φ(i)φ(j)

= T (e1, e2)φ1(v)φ2(w) + T (e2, e1)φ2(v)φ1(w) + . . .+ T (e2, e3)φ2(v)φ3(w) + T (e3, e2)φ3(v)φ2(w)

= T (e1, e2)(φ1 ∧ φ2) + T (e1, e3)φ1 ∧ φ3 + T (e2, e3)φ2 ∧ φ3

{φi ∧ φj}i<j

generates A2(V,F).
Definition. Consider T ∈ L(V ). (∧kT ) ∈ L(∧kV ) with

(∧kT )(ei1 ∧ . . . ∧ eik) = T (ei1) ∧ . . . ∧ T (eik)

If k = n, dim(∧nv) = 1, so e1 ∧ . . . ∧ en basis of V . ∧nT ∈ L(∧nV ) is the determinant of T .

Example.

T =

[
a11 a12
a21 a22

]
∈ F2,2

With e1 = (1, 0) and e2 = (0, 1). Then

detT = (λ2T )(e1 ∧ e2) = Te1 ∧ Te2 = (a11e1 + a21e2) ∧ (a12e1 + a22e2)

= a11a22e1 ∧ e2 + a21a12e2 ∧ e1
= (a11a22 − a21a12)(e1 ∧ e2)

Lemma. T ∈ L(V ).

(1) T ∈ L(V ) is invertible if and only if detT ̸= 0.

(2) T, S ∈ L(V ). Then det(T · S) = det(T ) det(S).

(1)

T ∈ L(V ) not being invertible is equivalent to Tv1, . . . , T vn being linearly dependent for {v1, . . . , vn}
basis of V . Then WLOG

Tvn =

n−1∑
j=1

ajTv − j

(detT )(v1 ∧ . . . ∧ vn) = Tv1 ∧ . . . ∧ Tvn = 0

since vn contains vi for all i and vi ∧ vi = 0. ■

(2)

det(T · S)(e1 ∧ . . . ∧ en) = (T · S)(e1 ∧ . . . ∧ en) = T (Se1 ∧ . . . ∧ Sen)

= TS(e1) ∧ . . . ∧ TS(en)

= T ((detS)e1 ∧ . . . ∧ en)

= (detS)T (e1 ∧ . . . ∧ en)

= (detS)(detT )(e1 ∧ . . . ∧ en)

■
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Corollary. Consider T, S ∈ L(V ), T · S = I. Then detT detS = 1.

Lemma. Consider A,B ∈ Fn,n

(1) (Laplace Expansion). det(A) =
∑n

j=1(−1)i+jaijMij , where Mij is the determinant of the
submatrix obtained from taking out row i and column j.

(2) Suppose A = [Av1 . . . Avn] ∈ Fn,m and B = [Av1 . . . Avj . . . Avi . . . Avn]. Then
det(B) = −det(A).

(3) A = [Av1 . . . Avi . . . Avi . . . Avn]. Then det(A) = 0.

(4) Suppose B has the same columns of A, but the ith column of B is λAvi + µAvk. Then
det(B) = λ det(A).

(5) B = P−1AP for some invertible matrix P . Then det(B) = det(A).

We now consider determinants on complex vector spaces. Suppose V is a complex vector space and
T ∈ L(V ).

Proposition. det(T ) =
∏n

j=1 λj , λjs eigenvalues counted with multiplicities.

Proof.

Remark. we could use induction.

There exists a basis B such thatM(T,B) is upper triangular.

Tv1 ∧ Tv2 ∧ . . . ∧ Tvn = λ1v1 ∧ (λ2v2a1v − 1) ∧ (λ3v3 + b2v2 + b1v1) = (λ1λ2 . . . λn)v1 ∧ . . . ∧ vn)

■

Proposition. det(T − λI) = p(λ) is the characteristic polynomial of T .

Definition. A permutationi τ : {1, . . . , n} → {1, . . . , n} is bijection. The set of all permutations of
{1, . . . , n} is denoted by Sn.

Definition. Sign : Sn → {−1, 1} defined as follows:

Sign(τ) =
{

+1 the natural order has been changed for an even number of times
−1 the natural order has been changed for an odd number of times

Lemma. τ, σ ∈ Sign.

(1) Sign(σ · τ) = Sign(σ) · Sign(τ).

(2) τσ = I implies that Sign(σ) = Sign(τ).

Corollary. det(At) = det(A).

Corollary. If A has two identical rows, then det(A) = 0.

Corollary. det(Aτ(1),·, Aτ(2),·, . . . , Aτ(n),·) = Sign(τ) det(A).
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Lemma. Isometry S ∈ L(V ) implies that |detS| = 1.

Proof.

SS∗ = S∗S = I

det(S) det(S∗) = 1

|detS|2 = 1

■
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28 Lecture : End Credits

28.1 Volume
We define volume intuitively (with Euclidean Geometry intuition) with a unit hypercube having

volume 1 and the hypercube with side length a having volume an.

Theorem. Consider Ω ⊆ Rn, and AΩ = {Ax | x ∈ Ω}. Then

volume(AΩ) = |detA|volume(Ω)

We first know that isometry preserves volume since |detS| = 1 for isometry S.
Proof 1 (Gram-Schmidt Process).

Lemma. If Ω1 ⊆ Rn, volume(Ω1) ̸= 0, then |detA| = volume(AΩ1)

volume(Ω1)
.

We notice that the volume of the figure spanned by v1, . . . , vn is

||v1||||v⊥2 || . . . ||v⊥n ||

Now recall that we can do the QR-decomposition of A:

 | |
v1 . . . vn
| |

 =

 | |
u1 . . . un
| |



||v1|| ∗

||v⊥2 ||
. . .

0 ||v⊥n ||


det(A) = det(Q) · det(R)

Now since |detQ| = 1,

|detA| = |detR| = volume(solid spanned by v1, . . . , vn)

the result follows? ■

Proof 2 (Spectral Theorem).
Recall the polar decomposition

A = S
√
AtA

Thus
volume(AΩ) = volume(S

√
AtAΩ) = volume(BΩ)

Let w1, . . . , wn be an orthonormal eigenbasis for
√
AtA. Pick Ω to be the solid spanned by w1, . . . , wn

and let the λ1, . . . , λn be the corresponding eigenvalues.

volume(Ω) = 1

√
AtAΩ

is the solid spanned by λ1w1, . . . , λnwn. Then

volume =

n∏
i=1

λi ⇒
volume(AΩ)
volume(Ω)

=
∏

λi = det
√
AtA = |detA|

■

Remark. I didn’t completely follow for the above section (I came pretty late trying to find a parking
spot) so the notes potentially might not make sense :eyes:. I may update them in the future. I also
missed a board :eyes: so I’ll probably study this off the textbook.
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28.2 Trace
Consider dimV <∞.

Proposition. For all φ ∈ V ′ and v ∈ V , Φ : V ′ ⊗ V → L(V ) with φ⊗ v 7→ (V → V,w 7→ φ(w)v) is
an isomorphism.

Remark.
L(V )← V ′ ⊗ V → F

with V ′ ⊗ V → F being defined by φ⊗ v 7→ φ(v), the map from L(V ) to φ(v) is the trace map.

Proof.

dim(V ′ ⊗ V ) = dim(V ′) dimV = (dimV )2 = dimL(V )

Consider v1, . . . , vn a basis of V and φ1, . . . ,mφn a dual basis of V ′. Then {varphii ⊗ vj} is a basis of
V ′ ⊗ V .

M(Φ(φi ⊗ vj), {v1, . . . , vn}) =

 0
1
0


where the 1 is in the ith column and jth row.

Exercise: prove that its injective/surjcetive.
Proof that the map from L(V ) to φ(v) is the trace. Consider A = [aij ]1≤i,j≤n.

Φ(
∑
i,j

aijφj ⊗ vi) = A

ev(Φ−1(A)) = ev(
∑
ij

aijφj ⊗ vi) =
∑
i,j

aijδij =

n∑
i=1

aii = trace A

■

28.3 Cayley-Hamilton

Theorem. Consider A, an n× n matrix. The characteristic polynomial f satisfies

fA(λ) = det(λI −A)

and fA(A) = 0.

Proof.
Consider the special case 

0 −a0
1 0 −a1

1
. . . −a2
. . .

...
0 −an−2

1 −an−1


Using the problem from PSet 10,

Ane1 + an−1A
n−1e1 + . . .+ a0e1 = 0

The minimal polynomial for A and e1 is

xn + an−1x
n−1 + . . .+ a0
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det(λI −A) = det



λ a0
−1 λ a1

−1
. . . a2
. . .

...
λ an−2

−1 λ+ an−1


Laplace
== λdet



λ a1

−1
. . . a2
. . .

...
λ an−2

−1 λ+ an−1


Claim: det(λI −A) = λn + an−1λ

n−1 + . . .+ a0.
We prove this via induction. Using Laplace,

det(λI −A) = λ(λn−1 + an−1λ
n−2 + . . .+ a1) + (−1)n+1a0(−1)n−1

and the middle parentheses follows from the induction hypothesis. □

In particular, fA(A)e1 = 0. We now want to reduce to this special caes. We want to prove that for
all v ∈ V , fA(A)v = 0. Let W be the smallest invariant subspace of V containing v.

Claim: W = span(v,Av, . . . , Akv, . . .) = span(v,Av, . . . , Am−1v where m is the smallest positive
integer such that v,Av, . . . , Amv are linearly dependent. In particular, v, . . . , Am−1v is a basis of W .

Since v,Av, . . . , Amv are linearly dependent,

Amv = −am−1A
m−1v − . . .− a0v

Apply An to both sides with n ≥ 0. For all k ≥ n, we can write Akv as a linear combination of
Ak−1v, . . . , v. We induct on k − n to conclude that Akv is a linear combination of Am−1v, . . . , v. □

Now:

A|W =



0 −a0
1 0 −a1

1
. . . −a2
. . .

...
0 −am−2

1 −am−1


= B

Using our special case, det(λI −B) = λm + am−1λ
m−1 + . . .+ a0.

Claim: The matrix of A with respect to a basis of V extending {v, . . . , Am−1v} is[
B ∗
0 ∗

]
Since fA is independent of basis,

det(λI −A) = det(λI −
[
B ∗
0 ∗

]
) = det

[
λI −B ∗

0 λI − ∗

]
= det(λI −B) det(λI − ∗)

Remark. Notice that
det

[
A B
0 C

]
= detA detC

This comes from the following:
Ae1 = a11e1 + . . .+ an1en

...

Aen = a1ne1 + . . .+ annen

detA = Ae1 ∧ . . . ∧Aen

=
∑

{i1,...,in}={1,...,n}

ai11ai22 . . . ainnei1 ∧ . . . ein

=
∑

sign of (i1, . . . , en)ai11 . . . ain,n ⇒ detAt = detA
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fB(λ)|fA(λ)

with | meaning divides and fB(A)v = 0 implies that fA(A)v = 0 = s(A)fB(A).
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29 Precept : Post-Credits Scene

Remark. The last class . . .. A very nostalgic/indescribable feeling.

29.1 Determinants
Definition (Determinant). Consider an n× n matrix A with the form:

A =

A11 . . . A1n

...
. . .

...
An1 . . . Ann


Then

detA =
∑

(m1,...,mn)∈perm(n)

(sign (m1, . . . ,mn))Am1,1 · . . . · · ·Amn,n

The determinant detects whether a matrix is invertible. Specifically, A is invertible if and only if
detA ̸= 0.

We consider some cases. In the one dimensional case,[
a
]

is invertible if and only if a ̸= 0. In the two dimensional case,[
a b
c d

]
is invertible if and only if ad− bc ̸= 0.

One application of determinants is finding inverses.

Theorem. If A =

[
a b
c d

]
, then

A−1 =
1

ad− bc

[
d −b
−c a

]

There are multiple proofs but ehre we will do the one by Cayley-Hamilton:
Proof.

Remark. In general, the characteristic polynomial is

zn − (trace A)zn−1 + . . .+ (−1)n detA

The characteristic polynomial is z2 − (a+ d)z + (ad− bc), so by the Cayley-Hamilton theorem,

A2 − (a+ d)A+ (ad− bc) = 0

Since A is invertible,
A− (a+ d)I + (ad− bc)A−1 = 0

solving for the inverse we get the desired result. ■

We now wish to consider larger matrices. The formula for detA has |perm (n)| = n! terms. For the
3 by 3 case, this is managable:

86



Example. Consider the matrix A11 A12 A13

A21 A22 A23

A31 A32 A33


A trick we can use is to write the determinant is to with the first two columns again, and all the
permutations show up as diagonals with diagonals decreasing from left to right being positive and
diagonals going from right to left being negative:

A11 A12 A13 A11 A12

A21 A22 A23 A21 A22

A31 A32 A33 A31 A32

we get Sarmr’s rule:
detA = A11A22A33 +A12A23A31 +A13A21A32

−A13A22A31 −A11A23A32 −A12A21A33

Example. We now try to find the determinant:

det


0 0 1 0 2
5 4 3 2 1
1 3 5 0 7
2 0 4 0 6
0 0 4 0 4


Notice that the fourth column only has a 2 that is non zero, so all nonzero terms in the determinant
must contain the 2

det


0 0 1 0 2
5 4 3 2 1
1 3 5 0 7
2 0 4 0 6
0 0 4 0 4


Looking at the uncolored cells, only 3 is nonzero in its column, so all terms in the determinant must
contain it:

det


0 0 1 0 2
5 4 3 2 1
1 3 5 0 7
2 0 4 0 6
0 0 4 0 4


Again, the two in the first column is the only nonzero element so it must be in the determinant

det


0 0 1 0 2
5 4 3 2 1
1 3 5 0 7
2 0 4 0 6
0 0 4 0 4


This means that the determinant is just

sign(4, 3, 5, 2, 1)72 + sign(4, 3, 1, 2, 5)48 = 72− 48 = 24

In other words, if there are a lot of 0s in a matrix, this formula is useful, but otherwise its not very
efficient.

We now discuss the cofactor expansion method of finding the determinant of an n× n matrix. Let

Mij = det(the (n− 1)× (n− 1) matrix formed by omitting the ith row and jth column of A)
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Then we get the cofactor expansion along the jth column:

detA =

n∑
i=1

Aij(−1)i+jMij

and the cofactor expansion along the ith row:

detA =

n∑
j=1

Aij(−1)i+jMij

We can also find the determinant using column/row reduction.
Consider an n× n matrix A.

Step 1. Do column/row operations on A to get a simpler matrix B, keeping track of s the number of
row/column swaps and k1, . . . , kr what you divide the columns and rows by (r is the rank).

Step 2. detA = (−1)sk1 . . . kr detB.

Example.

A =

2 2 2
1 3 2
2 2 5

→
1 1 1
1 3 2
2 2 5

→
1 1 1
0 2 1
0 0 3

 = B

Then detA = (−1)0 · 2 · detB = 12 since det b = 1 · 2 · 3 (since it is upper-triangular).

Example. Consider

A =


2 0 0 0
1 2 0 0
−1 0 2 0
0 0 1 −1


Note that the characteristic polynomial of A is det(zI−A) = det(zI−AT ). Thus, the characteristic
polynomial is (z − 2)3(z + 1).

Example. Consider

A =

−1 0 1
−3 0 1
−4 0 3


We would like to find the Jordan form. First, we find the eigenvalues. We can use the characteristic
polynomial to do this. Notice that

det(zI −A) = det

z + 1 0 −1
3 z −1
4 0 z − 3


We do expansion along the second column. We get:

= z det

[
z + 1 −1
4 z − 3

]
= z((z + 1)(z − 3) + 4) = z(z2 − 2z − 3 + 4) = z(z2 − 2z + 1) = z(z − 1)2

thus the eigenalues are 0 and 1.

Remark. Expansion is best when we are trying to find the characteristic polynomial because
we don’t want to have to do weird things like dividing by z.
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Now we want to find bases for G(0, A) and G(1, A). For λ = 1,

A− I =

−2 0 1
−3 −1 1
−4 0 2


this has rank 2. Also,

(A− I)2 =

0 0 0
5 1 −2
0 0 0


Notice that (−1, 5, 0) is in ker(A− I)2 but not ker(A− I). Then (A− I)(−1, 5, 0) = (2,−2, 4) is in
ker(A− I) in addition to (−1, 5, 0).
For λ = 0, (0, 1, 0) is in the kernel by inspection. Then

A =

 2 −1 0
−2 5 1
4 0 0

1 1 0
0 1 0
0 0 0

 2 −1 0
−2 5 1
4 0 0

−1
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