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1 Lecture 1: Vector Spaces

1.1 Groups
Definition (Group). A group (G, ") is a set G equipped with - : G x G — G

(a,b) ~a-bed
Such that the following holds
(1) a(bc) = (ab)c for all a,b,c € G.

(2) 3 an element e € G satistying

for all a € G.

(3) Va € G, 3b € G such that ab = ba = e and b is called the multiplicative inverse of a.

Example. (Z,+) is a group. (Q,+) is a group. (R, +) is a group. (R\Q, +) is not a group (0 is not
in the set). (R, x) is not a group (0 does not have a multiplicative inverse). (R\{0}, x) is a group.

Definition (Abelian Group). A group G is called an abelian group if ab = ba for all a,b € G.
All the groups in the above example are abelian groups.

Example. {e} (e is the identity) is called the trivial group. It has one element, which is the inverse
of itself.

Example. Z, = {0,1}. Our operation is defined as follows:

0+0=0
0+1=1
1+0=1
1+1=0

Definition (Field). A field (F,+, ) is a set F equipped with +: G x G — G and - : G x G — G with
a+beGanda-be G for all a,b € G such that the following holds:

(1) F is an abelian group under “+” (we denote by 0 the additive identity).
(2) F\{0} is an abelian group under “-” (we denote by 1 the multiplicative identity).
(3) For any three elements a,b,c € T,

a-(b+c)=ab+ac

Example. (R, +, X) is a field. (Q,+, X) is a field.

Example. Zy = {0,1}. We can now write the following tables:
+ |
0
1

o1 -
0(1 O
110 1

Since both tables are symmetric over the diagonal, the groups are both Abelian. Combined with the
distributive property for Z, this is a field.




1.2 Complex Numbers

Definition (Complex Number). A complex number is a pair (a,b) € R x R of real numbers. We can
also denote a + bi = (a, b).
Definition (Complex Addition). Counsider a + bi and ¢ + di.

(a,0)+ (c,d)=a+bi+c+di=(a+c)+ (b+d)i=(a+c,b+d)
Definition (Complex Multiplication). Consider a + bi and ¢ + di.
(a,b) - (¢,d) = (a+bi) - (c+ di) = (ac — bd) + (ad + bc)i = (ac — bd, ad + be)
In particular, 7 - i = v/—1.
Example. (C,+) is an abelian group with the identity 0 = (0,0). (C\{0}, ) is an abelian group with

the identity 1 = (1,0) and the inverse exists since it is simply the result of solving the system of linear
equations resulting when you solve (a + bi)(c + di) = 1. By distributivity for R, (C, +, ) is a field.

1.3 Vector Spaces

Definition (Vector Space). A triple (V,+,-) and a field F are called a vector space where + is called
addition and - is called scalar multiplication if
(A) (V,+) is an Abelian group.
(M1) 1-u=wuforalueV.
(M2) a(bu) = (ab)u for all a,b in F and w in V.
)

(M3) (a+b)-u=a-u+b-uforalla,beFanduecV.

Remark. Scalar multiplication is - : F x V' — V. 1 is the multiplicative identity in IF. Also, notice
that theres addition in F and addition in (V,+,-) which are different and multiplication in the field
and scalar multiplication which are both different but we are often lazy and just notate them with the
same symbol.

Example. F" = {(a1,...,a,) |a; e F1 < j <n}
(@11 @n) + (1o yb) = (@1 + by + by)

AMai, .- a,) = (Aag, ..., Aay)

for all A € F and (aq,...,a,) € F™. F" is a vector space over F.

Example. C is a vector space over R.




2 Lecture 2: Subspaces

Lemma. Let G be a group. Then
(1) e is unique

(2) any element a has a unique inverse in G.

Proof.
(1)

Suppose e; and ey are two distinct elements. Then
€2 =€1-€2 =€2- €] = €1
(2)
Suppose a has two inverses v and w.

w = we =w(aw) = (wa)v =ev =v

Corollary. Let V' be a vector space over F.
(1) 0-U=2 where0eFand & €V forallueV.
(2) \o =g for all A € F.

Proof.
(1)
O-u=0+4+0)-u=0-u+0-u
(—0u) 4+ (0u) = (—0u) + (Ou) + (Ou)
=0 -u
(2)
Same idea

Corollary. (—1)-u= —uforall u e V.

Example. F" = {(z1,...,2,) |2; e F1 < j <n}
(X1, yxn) + (Y1, Yn) = (@1 + Y1,y Tr + Yn)

AZ1, .o n) = (A2, .., Azy)

with A € FF.
F>* = {(z1,22,...) |z; €F, j€Z"}

is a vector space.




Example. Given a set S, a field F, define set F°, all functions f:S—=F,
(f +9)(=) = f(z) + g(2)
(Af)(x) =X f(X)

Example. (F2) where S = {0,1,...,n — 1} has 2" elements. (F3)° where S = {0,1,...,n — 1}
has 3" elements.

Remark. Fs is just a field with two elements.

Definition (Subspace). Let V be a vector space over F. A subset W C V is a subspace if W is a
vector space over F'.

Remark. The above might sound confusing, sometimes when we refer to the vector space we just
refer to its set and not its operations for ease.

Example. W = {(21,22,0) | 1,22 € F}, W is a subspace of F* because
(21,72,0) + (¥1,92,0) = (21 + y1, 22 + 92,0) € W

(r1,22,0) = (Az1, Aw2,0) € W

Proposition. Let V' be a vector space over F. A subset W # () C V is a subspace if and only if
1) zsew
(2) u+v e W for all wand v in W.
(3) Mu e W forall Xin F and w in W.

Example. Define R® = {(z1,...,2p,...) | x; ER,j € Zso}
oo
L(R) = {(z1,...,Zn,...) | D _|a;]* < o0}
j=1

We can check that I5(R) is a subspace:
e o=(0,...,0,...) € [5(R)

o A&y, &n,y...) = (AZ1,..., ATy, ...) since
D (Az)? =X (x)° < o0
j=1 j=1

o Given (Z1,...,%Zp,...) € 12(R) and y1,...,Yn,...) € l2(R),
o0 o0 o0 (o]
S mi+y)? <> ek +22)=2) a2 +2) yf <o

Jj=1 Jj=1 Jj=1 Jj=1




Example. R, N all of the solutions (21, z2,x3) of
1171 + a1222 + a13x3 =0
(2171 + A222 + azzr3 =0

a3171 + azaxs + azzrz =0

N is a subspace of R3.

Proposition. V is a vector space, and suppose U and W are subspaces of V.
o UUW # 0 is a subspace of V

e If U and W do not contain each other, U U W is not a subspace.

Remark. The union is not a linear operation because it doesn't preserve the linear structure of the
space.

Question: Given subspaces U and W of V, construct the smallest subspace that contains U U W.

Remark. All linear combinations.

Definition. Let U and W be subsets of V. Then U+ W = {u+w | u € U,w € W}.

Proposition. U and W are subspaces of V. Then U + W is the smallest subspace that contains
UuWw.

Proof.
Notice that U CU + W since 0 € W, and W C U + W since 0 € U. Thus, UUW CU + W.
Forala+beU+Wand c+din U+ W,

(a+b)+(c+d)=(a+c)+(b+d) e U+W

(a+beU+W=Na+b = a+A\BeU+W

Let Z be any arbitrary subspace of V' containing U N W. Then U + W C Z.
ForalueUandwe W, u,we UUW C Z sou+w € Z. Thus, U+ W C Z.

Example.
U ={(z,2x,y,2y) € F* | z,y € F}

V = {z,2z,y,y) € F* | z,y € F}
U4V ={z,22,y,2) € F*| z,y,2 € F}



3 Precept 1: Historical Motivation to Linear Algebra

3.1 Introduction to Linear Systems

Goal of Linear Algebra: Develop systematic methods to solving systems of linear equations.
Example. 5 cows and 2 sheep cost $10. 2 cows and 5 sheep $8. How much does 1 cow or 1 sheep cost?

Solution. Let x be the cost of a cow and y be the cost of a sheep.

5z + 2y = 10
2¢ + 5y =8

Dividing the first row by 5, subtracting two of the first row from the second row to eliminate z, and
multiplying the second equation by 25—1 we get

+2,29
€T -1 =
=Y
_ 20
=5

34
which then lets us get z = o

Today, we will attempt to create an algorithm to solving systems of linear equations. We have two
operations with equations:

e Multiply a row by a nonzero scalar
e Add rows
e Swap rows

Geometrically, 5z 4+ 2y = 10 and 2z + 5y = 8 are lines (or similar figures), which is why its called
linear algebra. Here, we are working with the real numbers, so F = R.

Harder Example.

wAY=2==2
3r — by + 132 =18
r—2y+5z2==k

Elimination on this matrix yields

r+z=1
y—2z=-3
0=k-—7

so k must be 7 and since we can plug in any real number for z, we have infinitely many solutions.
There are three possible number of solutions that a system of linear equations can have:

e 0
o1

e infinitely many

Remark. It's important to remember that we cannot divide by zero. In generic fields that are not the
real numbers, we have to be more careful about this.



Example. When does {(z,y,2) | az + by + cz = k} C F? form a subspace? When k = 0 because
then it will pass through the origin.

3.2 Matrices, Vectors, and Gauss
Jordan Elimination

Idea: turn this process into an algorithm.

Example.

4r1 + 320 + 223 — x4 =4
5x1 + 4ao + 3x3 — x4 =4
—2x1 — 2x9 — T3 + 224 = —3
1lzq + 629 + 423 + x4 = 11

we encode this into a data structure.

Definition (Matrix). An n x m matrix over a field F is a rectangular array

aii ai12 e A1m

a1 a2 ... d2m
A =

(€275} oo Qpm

with a;; € IF for all 4 and j. Matrices A and B are equal when their size and entries are all the same.
We also have special types of matrices:

e If n=m, A is a square matrix
o If A is square and a;; = 0 whenever ¢ # j, A is a diagonal matrix
o If a;; = 0 whenever 7 > j, A is upper triangular

o If a;; = 0 whenever 7 < j A is lower triangular

If a;; = 0 for all ¢ and j, A is a zero matrix

Example.

r+y—2z2=5
20+ 3y + 4z =2

We turn this into a matrix of coefficients: the coefficient matrix.
1 1 =2
2 3 4
and we can make this into an augmented matrix with the other sides of the equation:
1 1 -21|5
2 3 4 |2
We can now do the same operations that we did on regular matrices to augmented matrices to solve

systems. We get:

1 0 —-10| 13
01 8 |-8




The reasons that this matrix is so nice are that one, the leftmost nonzero entries are 1, the leftmost
nonzero entries are alone in their columns, and the leftmost nonzero entries form a staircase.
The solutions to this matrix are:

13 + 10t
—8—8t| eR3|teR
t

An algorithm for solving linear equations is called Gauss-Jordan elimination. The idea is that we
work equation by equation top to bottom. Suppose you've dont all previous equations and you get to
the ith equation:

crj+...=b

where c¢ is nonzero. We divide by ¢, to make the row

Finally, we eliminate z; from all other equations by subtracting multiples of this row. Finally, go to
the next equation. The algorithm stops if either you get zero = nonzero, a contradiction, or you get a
consistent system and rearrange the equations to get the staircase shape.

On the matrix side, we call these steps “elementary row operations”. They are:

1. Divide a row by a nonzero scalar
2. Subtract a multiple of one row from another one
3. Rearrange rows

If M is the augmented matrix you start with, the output of the algorithm is called rref(M) (“reduced
row echelon form”).

Definition (Reduced Row Echelon Form). A matrix is in reduced row echelon form if it satisfies the
leftmost nonzero entries are 1, the leftmost nonzero entries are alone in their columns, and the leftmost
nonzero entries form a staircase.

Example.
z+y=1
20 —y =95
3z +4y =2
The associated matrix is
1 1 1
2 —-11|5
3 4 |2

1 1 1
0 —-3| 3
0 1 |-1
1 0] 2
0 1]|-1
0 0] O

10



4 Lecture 3:
Definition. Let Uy,..., U, C V. We define

Ur+.. . +Un={wi+...wun |w; €U;, 1 <j<m}

Lemma. Let Uy, ...U,, subspaces of V. Then Uy + ...+ U, is the smallest subspace that contains
U W,
j=1%2

Definition. Let Uy,...,U,, €V
(1) MUy + AUz + ... + A\ Uy, is called a linear combination (A; € F, 1 < j < m).
(2) span(Uy,...,Un) = {MU1 + XUz + ... + \yUp | \s € F, 1 < j <m}
(3) span() = {0}

Lemma. Let Uy,...,U, € V. Then span(Uy,...,U,,) is the smallest subspace that contains
Up,...,Unp.

Remark. span(Uy,...,Uy,) = > i~ span(U;)

Definition.

(1) A vector space V is called finite dimensional if there exists a subset S = {Vi,...,V,,} such that
V =span(Vy,..., V).

(2) A vector space V is called infinite dimensional if it is not finite dimensional.

Example.

(1) Given afield F, a function P: F — F, P(Z) = apnZ™ +ap _12™ 1 +...+a1z+ag, 0 # a,, € F,
a; € F for all 0 < j < m is called a polynomial. There is a one to one correspondance from
P(Z) to (ag,at,--.,am)-

P(F) is the space of all polynomials over F.
This is infinitely dimensional because suppose it is finitely dimensional, then the polynomial with a
degree larger than all of the degrees in the finite set that spans it is not in the span, a contradiction.

P(F) is isomorphic to the space of all tuples with finitely many elements (only the first value must be
nonzero).

(2) Cla,b] continuous functions on [a,b] f : [a,b] — R is infinitely dimensional.

(3) R[a,b] Riemann integrable functions on [a, b] is infinintely dimensional since it is a superset of
Cla, b)].

Example.
U = {(z,22,y,2y) €F* | 2,y € F}

V ={(z,2z,y,y) € F* | z,y € F}
U+V={(z,2x,y,2) cF* | z,y,2z € F}

Definition (Direct Sum). Uy + ...+ U, is a direct sum if for all w € Uy + ... 4+ U,,, there exists a
unique representation w = wy + ... w,, where w; € U;, for 1 < j < m.

11



Proposition. Let Uy,...,U,, C V subspaces. Then the following are equivalent:
(1) Uy + ...+ Uy, is a direct sum.

(2) fwi+...wy =0, w; €U; with 1 <j <mthenw; =0forall1<j<m.

Proof of one direction.

U}jGUj

’LﬁjEUj

O:(w17w1)++(wm7wm)

with (w; —w;) € U; for all j. Applying 2,
wj = wj

for all j, so the sum is a direct sum.

Lemma. Let U,V € W be subspaces. Then (1) is equivalent to (2):
(1) U+ V is a direct sum
2) UnVv ={0}

Proof.
First we show that (1) implies (2). Taking z € UNV,

z=ueUCU+V

z=veVCU+V
O=u—velU+V
u=0v=0
so z = 0. We now show that (2) implies (1).
u+v=0=>u=0v=0
u=—-v=>uvelnV

By (2), u =v =0.

We can use this idea to make a stronger proposition than before:

Proposition. Let Uy,...,U,, €V subspaces. Then the following are equivalent:
(1) Uy + ...+ Uy, is a direct sum.
(2) fwi+...wp =0, w; € Uj with 1 < j <m then w; =0 forall 1 <j<m.

12



Example.
Uy ={(z,z+y,0) € F3 |2,y € F}

Us = {(0,0,2) € F3 | z € F}

Us = {0,y,y) € F* | y € F}
Ui + Us + Us is not a direct sum since

(0,0,0) = (0,1,0) + (0,0,1) + (0,—1,-1)

Uy +Us = {(0,y,2) € F? | y,z € F}. Notice that

U N (U2 + Us) # {(0,0,0)}

U,nU; = {(0,0,0)}

for all i # j.

V is a finite dimensional vector space over F.
Definition. Given Vi,...,V,, € V,

(1) They are linearly independent if \yV; + ...+ A\, Vi, =0, A; € F implies that A; = 0 for all 4.

(2) They are linearly dependent if there exist scalars A1,..., A, € F not all zero such that \yV; +...+
Am Vi = 0.

By convention, a collection of zero vectors is linearly independent.

Lemma (Linear Dependence Lemma). Suppose v1,...,v,, are linearly dependent. Then there
exists 1 < j < m such that

(1) U; € span(Uy, ..., Uj—1).
(2) span(Uy,...,Up) =span(Uy,...,Uj—1,Ujt1,...,Un)

Proof.
There exist scalars A1,..., A\, € F not all zero such that AUy + ... + A\, U, = 0. Let 5 be the

MU+ o+ 20052
Wit + g-17g IEspan(Ul,...,Uj_l).

maximal one such that A\; #0. U; = —

Aj
Proposition. V' = span(wy,...,w,) Let uy,...,u be linearly independent. Then k& < m.
Proof.
V = Spa‘n(U17w17 wa, ... 7wm)
By the Linear Dependence Lemma,
span(Uh wi, - .- ,'lUm)
span(Ul, UQ,wl, s, Wyi—1, W1, - .- wm)

= Span(U17 U2a {w17 s 7wm}\{wj1’wj2})

=m>k

Corollary. V is finite dimensional. If U C V is a subspace, then U is finite dimensional.

Proof.
If U is the zero space, we are done. Suppose U is not. Suppose U is span(v;) with v € U NV, then
we are done. Otherwise,

13



5 Lecture 4: Bases & Dimension

Bases is the plural form of basis. For this course we will work with finite dimensional vector spaces,

which have finitely many vectors that can be used to generate (span) them.

Definition (Basis). If vy, vs, ..., v,, are linearly independeent, they are called a basis of span(vy, v, . . .

Example.

(1) Pn(F) : all polynomials with degree less than or equal to m. A basis for this space is
{1,2,22,...,2™}. Since for the following statement to hold for all z,

X+FMNz+.. .+ A" =0= )\ =0Vi
they are linearly independent.
(2) R?: (1,0,0),(0,1,0),(0,0,1) is a basis.

(3) N ={(z,y,2 € R® | 2z +y+ 2 =0}. Abasisis {(—1,1,1),(0,—1,1)}. Any vector (x,y, z)
can be generated with —z(—1,1,1) + (z + 2)(0,—1,1)

Lemma. Any generating list of a finite dimensional vector space can be reduced to a basis.

Proof.

V =span(vy,...,vn). f V ={0}, done. Assume V # {0}. If vq,..., vy, is linearly indepenent, done.
Assume vy, ..., vy, is linearly dependent. By the Linear Dependence Lemma, there exists 1 < j < m such
that V' = span(vi,...,vs,) = span(vi,...,Uj—1,Vj41,-..,Umn). Repeating this step until the generating

set is linearly dependent.

Theorem (Existence of a basis). Let V' be a finite dimensional vector space. Then, V has a basis.

s Um)-

Proof.
By definition, there exists a generating list that is finite, so there must be a basis.

Corollary. Consider a finite dimensional vector space V. Let A = {w1,...,wx} be a set of linearly
independent vectors in V. Then A can be extended to a basis of V.

Proof.
By the Existience of a basis theorem, V has a basis {u1, ..., uy}. Then
V =span(wy, ..., Wk, U1, ..., Up)
Recall the following theorem:

Lemma. {wy,...,wy,} linearly dependent. Then there exists 1 < j < m such that

(1) w; € span(wl, 500 ,wjfl)

(2) span(wi, ..., W) =span(wi, ..., Wj—1,Wj41,. .-, W)
Remark. | believe there's a much simpler proof. Start with the set {wi,...,wr}, and suppose
span(wsy, ..., wg) # V. Then 3z € V with & & span(wy,...,wg). Then, add x to the set and start
again with the new set {ws, ..., wg,x}. Suppose for contradiction that this process does not end.

Then, eventually the set will be the entire vector space. However, this one of its basis (since it is finite
dimensional) is a subset of the above set, a contradition.

14



Lemma. wi,...,wi_1 linearly independent. wy ¢ span(wy,...,wi_1) if and ony if wy,..., wy is
linearly independent.

Lemma. Let {ws,...,wi} be a basis of V. Then for any vector v € V, there exists a unique
representation
V=AW + ...+ Apwg

Proof.
Suppose this is not true. Then there existis two distinct represenations

V= AWy + ...+ Agwy

’U:>\A1’w1-i-...-‘r)\Ak’U}]c
OZ()\—)\Al)wl—l—...—l-()\k—/\Ak)wk

which means \; = ):j for all j by linear independence. ]

Theorem. Let U be a subspace of V. Then there exists a subspace W such that V. =U @ W. Then
we define W to be a complement of U.

Proof.

Let B = {u1,...,un} be a basis of U. Then by the last corollary, B can be extended to a basis
B = {u1,...,Um,w,...,wp} of V. Then, define W = span(w, ... ,wg). Then we will prove that
UNW ={0}. 0#v=XMNui + ...+ Aptym = 1wy + ... + prwg. Since B is a basis of V,

0=MNui+ ...+ Apupy — ppwy — ... — ppWg

S A== A === =0

a contradiction. |

Lemma. Any two bases of a finite dimensional space has the same length.

Proof.
Consider two bases By = {uy,...,un} and By = {wy,...,wr}. Then using the reduction lemma,
m >k and k > m, som = k. |

Definition (Dimension). Let V be a finite dimensional vector space. We define the dimension
dim (V') = the length of nay basis of V.

Example. N = {(z1, 79, 73) € R?: 271 + 23 + 23 = 0} has dim(N) = 2.

Consider y(¢) such that y"/(t) = 0. The collection of all solutions has dimensionality three.

Proposition. If U C V is a subspace, then dim U < dim V. Moreover, “="if and only if U = V.

Proposition.
(1) Any linearly independent list with length dim(V') is a basis of V.

(2) Any spanning list with length dim(V) is also a basis of V.

15



Theorem. U,V C W subspaces. Then
dim(U +V) =dimU + dim V — dim(U NV)

In particular, U + V is a direct sum if and only if dim(U + V) = dimU + dim V.

Proof.

Consider a basis B = {wy,...,w;} of UNV. Then we have the following extensions.
BU = {w17...,wk,u1,...7um}
BV = {wla"'awk,vlv"',vn}

We want to show that dim(U + V) = m + n + k. In other words, we would like to show that
D= {wb"',wkaula"wum,vl,"',vn}

is a basis of U4 V. Clearly, D is a spanning list, so we simply must show that they are linerly independent.
In other words, we would like to show that

awy + ...+ apwi + bius + ...+ bty = —c1v1 + ..+ (—Crvn)

implies that all coefficients are 0.

16



6 Precept 2:

Example. Is T = {(z,y,2) | 22 + y*> 4+ 22 = 0} C F? a subspace? If F =R, T = {0}, so T is a
subspace! If F = C, (v/w,w,w®/?) is a solution. Also, since (1,7,0) € T and (0, —i,1) € T but the
sum isnt in T, it is not a subspace. f F =Ty, (z+y+2)2 =22 +9y2+22=0,s0x+y+2=0.
We have a subspace!

6.1 Matrix Algebra

We can look at matrix multiplication as follows:
AZ = |v1 ... v | =101+ ...+ 20U

We have some rules for AZ:
(a) A(Z+y) = AZ + Ay for &,y € F™.
(b) A(kZ) = k- AZ where k is a scalar.

Remark. We can write a linear system with augmented matrix
417
in “matrix form" as

AZ =1b

Example.

U1 Vg

U3

How many ways can we represent vy in terms of a linear combination of v, v3, and v3? our answer
is infinitely many. Proof: Note that we are working in two dimensions, so any pair of vectors in
{v1, 3,3} is a basis for R2. Thus, there are at least 3 solutions, which means there must be infinitely
many solutions (since any system of linear equations over R must have either 0, 1, or infinitely many
solutions). Another way to look at this is that after row reducing our matrix for the system, we get a
matrix such as

1 *
1 *

1 0] %

1] %

00

00

and we can plug in anything we want for the variables corresponding to the zero rows.
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Example. Consider the vectors

0 1 2

10 |0 |0

’Uli 0 7/02* O 71}3* O

0] 0] 0]

[0] [3] [0]

|1 |4 10

V4 = 0 7’05* 0 ,,Uﬁi 1

0] 0] 0]

Notice that _
O] 1| [2] (0] |3 [O 11 (0] |O
0] |0f [O] |1] |4 [O 0] |1] |0
sean( (ot 1ol fo] o] [o] [1]?=%2"(o] |o] |1|’

0| [0f |O] 0] O] [O 0] |0| |0

so the set of those three vectors is a basis for the span of all six. However, it is not a basis for [Fy.

1 3 6
Example. Do |1, (2|, 5| form a basis of F3? No since 3v; +v5 = v3. If we wanted to determine
1 1 4
this computationally, we could consider the following equation:
1 3 6
a1 |1]| +as [2] = |5
1 1 4

Trnaslating this into an augmented matrix, we have

1 3|6
1 2|5
1 1|4
The reduced form of this matrix is
1 3|6 1 03
rref(|1 2 |5()=(0 1|1
1 1|4 0 0]0
so a; = 3 and ag = 1!
1 1 1
Example. Consider the vectors |1|, (2], |3|. Is this a basis for F3? Then we must determine
1 3 6

whether they are linearly independent, or
a1V + a5 + azviy = 0

Considering the matrix representation and finding the reduced row-echelon form, we get:

11 1]0 1 00]0
ref(|1 2 3[0[)=[0 1 0]0
1 3 60 00 1[0

so the only solution is a; = as = ag = 0. Therefore, these vectors are independent as desired.

18



Remark. The columns of A corresponding to columns with leading 1s in rref(a) are linearly indepen-
dent.
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7 Lecture 5: Dimensions and Maps

7.1 Dimensions

Proposition. dimV =n, v1,...,vU, € V then the following are equivalent:
(1) v1,...,v, form a basis.
(2) v1,...,v, are linearly independent.

(3) span(vi,...,u,) =V

Proof. (Later)
Review the following proposition:

Proposition. V is a finite dimensional vector space, and U;,Us C V are subspaces, then

dim(U; + Us) = dim Uy 4 dim U — dim(U; N Us)

Proof done last class.

7.2 Maps

Definition (Map/Function/Homomorphism). Consider two vector spaces V or W over F. We define
a linear map/function/homomorphism) a function 7' : V. — W if Vu,v € V, A € F,

(1) T(u+v)=Tu+Tv
(2) T(Au) = AT (u)

For ease we sometimes staate these two conditions together with the condition T'(A\ui + Aqug) =
)\1T(U1) + )\2T(u2).

Definition. We define Hom(V, W) (V and W vector spaces over ) as the set of all maps from V to
W that are linear.

Properties of Linear Maps.
(0) T0 = 0 (Property 1 implies T'(u) = T'(u) + T(0))
(1) We have a special map (zero map) which maps all vectors to zero.
(2) I € Hom(V,V), V. — V, v — v is the identity map.
a1121 + a2 + ...+ a1n,2y,

2171 + Q22T + ... + G2pTn
(3) T € Hom(F", F™), T | : | = . = i

L1

Am1T1 + GmoZo + ... + GynTn

Example.

(1) (z+1): P(F)— P(F) f+ (22 +1)f is a linear map.

Remark. When thinking about vector spaces and linear mappings, it is often much more easy to
analyze them when we think of vectors as linear combinations of their basis vectors, in which case we
can write them with coordinates.
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Notice that property (3) above allows us to think of matrices as linear maps. We will now pose the
following question: does there exist a linear map T : F2 — F? such that

1 3
TB] =12 andT[(ﬂ =10|?
0 -1
1 3
If yes, how many? The answer is that there is one, and we can represent it with the matrix (2 0 |.
0 -1
Proposition. Let {uj,...,u,} be a basis of V. Let w1,...,w, be any n vectors in W. Then there

exists a unique 1" : V' — W linear such that T0; = wj; for all 1 <1i < n.

Proof.

For all v € V, there exists a unique way to write v as ajvy + ... + apv,. Then we define T as
Tv=ajwi + ...+ apw,. It is not hard to verify that this is a linear map.

Definition. Consider S,T € Hom(V,W). We define S+ T : V — W to be the mapping v — Sv+Tw.
We define AT to be v — \Tv.

Using these facts, we can see that Hom(V, W) is a vector space.

Compose two linear maps
UV, W/F

T € Hom(U,V) S € Hom(V,W)
SoT:U—-W uw S(Tu)

Properties of Compositions.
(1) Ty o(TooT3) = (T10T3) 015
(2) Tol,=T=1I1,0T (T:U —V)
(3) (S1+S2)oT=810T+80T,So(Ty+T2)=S0T; +SoTh.

Remark. If S,T € Hom(V,V) = End(V') we have SoT and T o S linear maps.

Remark. Warning: SoT # T o S (usually).

Example. Consider V = 3, e, eq,e3. T(e;) = eir1, S(e1) = e1, S(ea) = e3, S(ez) = eo.
Here, To S # SoT.

Consider T': V — W a linear map.
Definition (Kernel/Null Space). kerT' = {v € V |Tv =0} CV
Definition (Image/Range). im7 = {Tv |ve V} CW.

Proposition. kerT is a subspace of V' and imT is a subspace of W.

Proposition. T is injective if and only if ker T = {0}.

Proof Sketch. If we have Tv = Tw then it is the same as saying (there is a sort of equivalence)
T(v—w)=0.
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Proposition. For T' € Hom(IF",F"), we write T@ = Az where A is an m X n matrix, and

ker T'(=ker A) = {z | Az = 0}

ail QA1n
. . a21 A2n
imT(=imA) =span(| . |,...,| . |)=span(Tei,...,Te,)
am1 Amn
where e; = | 1| and the ith entry is a 1 and all other entries are Os.

Definition (Surjective). T is surjective if im7T = W.
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8 Lecture 6: Linear Maps

Lemma. Consider a linear mapping T € L(V, W) (L is the same as Hom).
(1) T is injective if and only if Null(T") = {0}
(2) T is surjective if and only if Range(T) = W

Theorem (Fundamental Theorem of Linear Maps). Assume dim(V) < oo. Let T € L(V,W).
Then
dim V' = dim(Null(T")) + dim(Range(T"))

Proof.
Consider a basis of Null(T'): {u1,...,ux}. Applying the extension theorem, there is exists a sequence
of linearly independent elements vy, ..., v, € V such that

{ut, ... up,v1, ..., om}

is a basis of V. We would now like to show that T'(vy),...,T (vy,) form a basis of W.
We will start by showing that Span(Tvs,...,Tv,,) = Range(T'). Consider any v € V. Then v =
A1+ oo Agug + v F - e Um, SO

Tv=MTuy + ... + MgTug + 1 Tor + ... + g Tom,
Since uq, ug, . .., u is a basis of Null(T),
Tv=mTvy +...4+ pmTom,

so Span(Tvy, ..., Tv,,) = Range(T') as desired.
Two show the second part, we now want to show that Twvy 4+ ...,Tv,, are linearly independent. If
kiTvi + ...+ knTv, =0, then
T(klvl + ...+ k}m’l}m) =0

so kyv1 + ... + knvy, is in the null space of T', so
kior + ..+ ko = diug + .o F dgug = ko + oo F ko + (—d)ur + .+ (—dg)ug =0

soki =ko=...=kp=d; =...=d, =0 as desired since these vectors are all independent (they form
a basis of V), and Ty, ..., Tv,, are linearly independent. |

Corollary. T' € L(V,W). Then
(1) If T is injective, then dim(V) < dim(W)
(2) If T is surjective, then dim(W) < dim(V)
(3) If T is bijective, then dim(W) = dim(V)

Corollary.
(1) anixr + ...+ a1nxy =0, a1y + ... + oy =0, ..., G121 + ... + GpZyn = 0. In matrix
form, we can write:
ay ° 60 Qp, I
=0
Aml -+ Qmn| |Tn
n > m implies that this admits nonzero solutions.
(2) a11x1 + ...+ a1pxy = by, a2121 + ...+ a2,y =ba, .., AT F oo+ Q@ = by M >N
implies that there exists by, ..., b,, in F" such that the above system is not solvable.
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Remark. Notice that the matrix in (1) is a mapping from F” to F™.

Proof.

(1)

If n > m, then the mapping is not injective, so the null space of T' is not {0}, so there exists nonzero
solutions.

(2)

If m > n, then the mapping is not surjective, so the range of T' is not W, so there exists an element
in W with no preimage. n

8.1 Matrices

We pose the following question: dim(V') = n, dim(W) =m, T € L(V,W). Hww can we realize T as
an m x n matrix? Consider B, = {v1,...,v,} basis of V, and B,, = {w1, ..., w,,} basis of W. We write:

T(Uj) =015W1 + ...+ QW

We denote
ail a12 . QA1n
a1 a9292 . A92n
M(Ta B’Ua Bw) =
am1 QAm2 cee Qmn

Lemma. Consider S,T € L(V,W). Then
(1) M(S) + M(T)) =M(S+T)
(2) AM(T) = M(AT) for all X € F

Lemma. T1,...,T,, € L(V,W) are linearly independent if and only if M(T}) ..., M(T,,) are linearly
independent.

Proof.

kiTy + o4 kT =0 M\ Ty 4 ...+ kpnTi) =0
& kip(Th) + ...+ kmp(T) =0
]

Now, we would like to motivate matrix multiplication. Consider two linear maps S € L£(V, W) and
T € L(U,V). We can define matrix multiplication as

S T=M(S-T)

Corollary. dim(the space of all m x n matrices) = m - n.

Proof Sketch. We can simply choose the n - m matrices with 1s in one of the n - m entries and 0Os
everywhere else.

Corollary. dim(V) = m, dim(W) = n, then dim(L(V,W)) = m - n.
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1
Example. A = (2 . Compute the dimension of the range of A. Using the Fundamental

)
— s
(Sl )

Theorem of Lienar Maps,

dim(Range(T")) = dim V' — dim(Null(T")) = 3 — dim(Null(T"))
so we would like to find the null space of the matrix. Performing row reduction on the matrix, we get:
2 11 2
2[)=1(0 1 -1
5 0 0 0

— s

1
rref( |2
2

so the dimension of the null space is 1. Therefore, dim(Range(T)) =3 —1 = 2.
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9 Precept 3:

9.1 Matrices

Cpmsoder a linear map: T -V — W. If a basis of V is (v1,...,v,) and a basis of W is w1, ..., Wy,

then we can write
Tvk = Alkwl +...+ AmkwnL

then we can write this as the matrix
Ak
Amk

If V=TF", w=F", use standard basis e; through ej, to say that Te; is the jth column of M(T).
The data of T : V — W is “equivalent” to the data of M(T, (v1,...,vp), (W1,...,Wn)).

Example. T : F? — F2. Suppose it maps

|7 6 =13
so M(T) is [11 9 17].

If we want to look at more geometric examples, if we wnat to see what happens to the standard basis

1 0
under {O _J,
We can use this idea to come up with the rotation matrix for two dimensions:

we can just read the columns to find that B] goes to [éﬂ and [ﬂ goes to {_OJ .

[cos § —sin 9}

sinf  cos6

Example. Suppose we have two vectors v; and vs and we have a transformation 7' that takes v; to
v1 and vy to 3vy. Then, we can write the transformation as the matrix

M(T, (v1,v2), (v1,v2)) = [é g]

This is basically telling us that the v, coordinate gets multiplied by a factor of two and the v; coordinate

stays the same. Now suppose we have ﬁ] and vy = B] in standard basis. Then,

M(T, (v1,v2), (€1, €2)) = ﬁ g] = E ;] [(1) g]
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9.2 Bases for Images

2 3

Example. Consider A = [6 9

} What is a basis for im(T") (T being the transformation associated

a2 =15 3
=arfg] o

Since the image of A is the span of its column vectors, the image of A is span( E] , B]) which is the

with A)? Notice that

1
same as span( 3 ).

Example (PSet 3/A). Take T': V' — W linear, with (v1, . ..,v,) being a basis of V and (w1, . .., wy,)
being a basis of W.
A= M(T,(v1,...,0p), (W1,..., W)

B = rref(A)

with pivots (leading 1s) in columns ji,..., .. Then

m
Yk = Zai,jkwi7 l1<k<r
i=1

is a basis for im(T').

Proof will be done for homework.

9.3 Bases for Kernels

Example. Consider ker(E ; ;

}) We would like to find a basis for the vectors such that

11 1] [*Y o
12 3| "2 T |o
Zs3
This is equivalent to solving the system of linear equations from the augmented matrix
1 1 1|0
1 2 3|0
When we find the row reduced echelon form of this above matrix, we get
1 0 —-1|0
01 210

so our solution is given by

t
—2t||telF
t
1 1
which is given by span | | —2| |, so |—2| is a basis.
1 1
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Notice that the vectors in ker(A) correspond to relations among the colmn vectors. In the above
example, 1 times the first column + — 2 times the second column + 1 times the third column is 0.

Example (PSset 3/B). Take T : V. — W linear, with (vi,...,v,) being a basis of V and
(wy, ..., wy,) being a basis of .

A= M(T, (v, 0p), (W1, W)
B = rref(A)

For every j such that the jth column of B has no pivots, consider

et i=7
= { 0 ¢ # j and ith column of B does not have a pivot

This is uniquely determined by Bc = 0 otherwise.

n
Tj = E C;U;
=0

for the (n — r) values of j such that jth column of B has no pivot. The z;s form a basis for ker(T').

Example. Notice that

Theneci =1, ¢0=—-2,¢c3=1
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10 Lecture 7: Matrices

Theorem (Rank-Nullity Theorem). Consider T': V. — W, with T' € L(V,W).
dim(V) = dim(Null(T")) + dim(Range(T"))

and the dimension of the range of 7" is also known as the rank.

If we have bases By = {e1,...,e,} of V and Viy = {f1,..., fm} of W, and T'(e;) = Y.~ a;; fi for
all j, then the matrix of T is
a1 a2 ... Qin

Gm1  Am2  -.. (Gmn

Remark. Shouldnt W instead be the image of T'(V).

Lemma. M € Hom(Hom(V, W), F"™™). In other words, M is linear.

We will now discuss taking the products of matrices. Consider S € L(V,W) and T € L(U,V). We
define _
M(S) - M(T) ™ M(S o T)

Consider the bases {e1,...,e,} for U, {f1,..., fm} for V, and {hq,...,hs} for W. Using these, we can

write

T(e;) =Y ai;f;
=1
K

S(fi) =D bulu
=1

k
SoT(e;) = chjhl
k=1

Also .
S o T(ej) = S(Z aijfi)
i=1

So we have essentially derived that matrix multiplication is the “row times column” multiplication that
we are familiar with.

Definition. A € F™"™ is invertible if and only if there exists a matrix B € F™™" such that AB = BA =
I,, (the identity matrix is the matrix with the diagonal of ones).

Remark. Notice that B must be linear since B € F"™"™ so by definition we have to check this to
verify something is invertible.
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Theorem. The set of invertible matrices, denoted by GL(n,F) is a group with respect to matrix
product. GL is an abbreviation for “General Linear".

Notation.
A;j © row i, column j

A;. . entire row j

A. 1 . entire column k

Lemma. A € ™" B € F™P. Then AB € F™P with
(1) (AB)ij = As. - B.j = 3 _1 AirBi;
(2) (AB).,=A-B.}

Notations. Let {vq,...,v,} be a basis of V. Then the matrix corresponding to v € V, with
v ="\, is
A1
M@)=|
Am

Consider T' € L(v, W), with a basis By = {fi,..., fn}. Then
M(T(vr)) = M ainfi)
i=1

= M(T).

)

Also,
MITV)=M(T) - M(T)
We will now discuss invertible maps.
Definition (Invertible Linear Map). Consider T' € Hom(V, W). T is invertible if and only if there

exists another linear map S € Hom(W, V') such that T'S is the identity of the space W and ST is the
identity of the space V. S is called the inverse of T'.

Lemma. Any invertible linear map has a unique inverse.

Proof.
Consider linear map T from V to W. Suppose T has two inverses S1, S3. Then

Sl = Sllw = SlTSw = 1V52 = 52

where 1y and 1y are the identity maps on W and V respectively. |

Lemma. Consider T' € Hom(V, W). T is invertible if and only if T" is bijective.

Proof.

We will first show the forward direction. We start by showing that T is injective. Let v € Null(T).
Tv =0,s0 T7'Tv = T7'0, so v = 0. Thus T is injective. We now show that T is surjective. For all
w € W, taking v = T'W, Tv = T(T"'w) = w.

We will now show the reverse direction. Consider bijective linear map T° € Hom(V,W). For all
w € W, w has a unique preimage W € V such that T'(#) = w. Define S(w) = 1.

ST(v) =S(w)=v

so ST is the identity map on V.



so T'S is the identity map on W. For homework, we verify that S is linear. Then S is the inverse of T'

as desired.
Definition. 7' € Hom(V, W) is a isomorphism if T' is invertible. V, W are isomorphic if there exists

an isomorphism 7' : V — W.

Remark. If we instead define inverses with S any arbitrary map such that 7S and ST are the
respective identities, is it necessary that S is linear?

Theorem. V, T : finite dimensional vector spaces. V is isomorphic to W if and only if dim(V) =
dim(W).

Proof.
We start with the first direction. There exists an isomorphism 7': V' — W . Then

dim(V) = dim(Null(7")) + dim(Range(T)) = dim (W)

To show the reverse direction, consider a basis of V, By = {ej,...,e,} and a basis of W, By =
{f1,..-, fn}. There exists a unique linear map 7' € Hom(V, W) such that Te; = f;

(1) T injective: 0 =Tv = T(Z:z /\16l) = Zi /\1T(€z) = Ez Aifi

(2) Surjective:

Corollary. Any V with dim V' = m is isomorphic to F™.

Corollary. L(V,W) = F™", where dimV = n and dim W = m.

Definition (Linear Operator). T € £(V,V) = L is called a linear operator.

Theorem. Consider T' € L(V'). Then

T injective < T surjective < bijective

Proof with dim(V') = dim(Null(T')) + dim(Range(T)).
We can now discuss row operations. We have three operations:

e Swap: swap two rows.

1 2 3
Consider A= |4 5 6. A row swap might yield:
T T 7
1 2 3
T
4 5 6
and we can represent this with
1 0 0 1 2 3
0 0 1|A=1|7 7 7
0 0 1 4 5 6

e Multiplication of a row by a scalar

e Replacing rows by a linear combinations including that row
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11 Lecture 8: Products and Quotients

Consider V, W vector spaces. Then

Definition (Product). V x W = {(v,w) | v € V,w € W}.
Definition (Addition). (v, w1) 4 (v, w2) = (v1 + vo, w1 + wo.
Definition (Scalar Multiplication). A(v,w) = (Av, Aw).

Example. Consider R x R3. This is the set of vectors of the form (x1, (22,23, 4)), which is four
dimensional.

Lemma. dim(V) = n, dim(W) = m means that dim(V x W) = n + m.

Proof.

{(6170)7<07fj)a1§1§n,1§]<m}

is a basis.

Lemma. Consider V, W C U subspaces with dim V' =n, dim W = m. Then
dm(VeW)=n+m
In particular V.x W =V o W.

Lemma. Let Vi,...,V,, CV. We define alinear mapI': Vi X ... xV,, > Vi+ ...+ V,,.

(Upy oy W) > U+ Uy

Then T is surjective and is injective if and only if the above sum is a direct sum.

Proof.

The surjectivity of I' follows directly from its definition. I' is injective if and only if the null space of

I'is {0}, so uy + ...+t =0 € V implies u; = 0 for all 4, which happens if and only if Vi +... 4V, is
a direct sum by definition. [ ]

Theorem. Let V,....V,, CV. Vi + ...+ V,, is a direct sum if and only if

dim(Vi + ...+ Vi) = > _ dim(V5)
i=1

Proof.
Applying the rank-nullity theorem,

i dim(V;) = dim(Null(T")) + dim(V1 + ... + V)

Thus dim(Vy + ...+ V,,) = >0, dim(V;) if and only if dim(Null(I")) = {0}, which is true if and only if
Vi+...+V, is a direct sum. [ ]
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Corollary.

i=1 i=1
II Vo = {(v1,v2,...) | Vo € A vq € Va}
a€A

ZVa = {ZU“ | 3 finite « € A, v, # 0}
acA acA

Definition (Affine Subset). U C V subspace. An affine subset may be defined with
v+U={v+ulueU}

with v € V.

Example. V = R3, U = {(2,9,0) | z,y € R}. For any w € R?, the affine subset w + U is the
plane-containing W and parallel to U.

Definition (Quotient Set). Consider the subspace U C V.
VIU={v+U|veV}

We have for all v,w e V,v~wif v —w e U.

Lemma. The following are equivalent:
1) v+ U=w+U
2 v~w, ie.v—welU

B) (v+U)N(w+U)=2

Consider v,w € V and A € F. Denote equialence classes with brackets.

[v] + [w] = [v+ w]
Alv] = [Av]
We can also verify well-definedness:
[v1] + [wr] = [v1 4 wi]
[va] + [wa] = [v2 + w2
We have v1 ~ vy and wy ~ we means [v; + wy] = [v2 + we]. This is since v1 — vy € U and wy; —we € U

implies
U1 + w1 7(1)24’11)2) =v1 —vytw —wy €U

Lemma. U C V, then V/U is a vector space.

Lemma. We define w7y : V. — V/U. Then my € Hom(V, V/U) is surjective. Null(my) = U.

Proof.
We have

Ty (w) = [w]

Note that [0] =0+ U € V/U is the zero element. In other words

7TU(’LU) = [O] =0+4+U
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Thus w € U.

Theorem. dim(V/U) = dim(V) — dim(U).

Proof.

dim (V) = dim(Null(7y)) + rank(7y)

and since 7y is surjective, rank(7ry) = dim(V/U).

Theorem. T € Hom(V,W). Null(T) C V.

T": V/Null(T) — W, [v] = Tv

Proof.
We would like to show that

(1) Range(T') = Range(T")
(2) V/Null(T) = Range(T)
Using the Rank-Nullity Theorem.

Remark. We can actually show that (W/U)/(V/U) = (W/V).
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12 Lecture 9:

Remark. | was a bit distracted so my notes for this class were a bit bad.

Consider T € Hom(V,W). Let us define T : V/Null(T) — W, with U = Null(T) and V, W € [v]y,
[U]U — Tw.
Tw=Tv+T(w—v)=Tv

so T is well-defined. Null(T) = Dy /Nui(r)- Let [v]y € V/U satisfy Tv = 0 whenever v € text Null(T).
Then [v]y = Null(T) & [v]y is the zero element in V/Null(T). Thus, T is injective from V/Null(T) to
w.

(1) Range(T') = Range(T)
(2) V/Null(T) = Range(T)

Proof 1.
T:V - W,dimV = dim(Null(T)) + dim(Range(T")). Thus,

dim(V/Null(T)) = dim(Range(T))

Proof 2. .
T is the bijection from V/Null(T) onto Range(T).
12.1 Category Theory
In any category, we have objects A and morphisms are the maps between any two given objects.
Object((V, W), f:V = W)

such that U C Null(f).
We have a morphism from V to Wi, f1, a morphism from W; to Wa, g € Hom(W;,Ws), and a
morphism from V to Ws, f3, such that

fo=1fi-g

12.2 Back on Track

Definition (Dual Space). Consider V' a vector space over F. We can define V' as Hom(V,F), where
every element in V' is called a linear function on V.

Example. V = F". Given any cy,...,c, € F,
(L1, Ty) =121 + ... + Cpp

=peV

However with
(a1, 22) =21+ 22 + 21,61 #0

v eV

Example. Take V = P(R). Define D(p) =p'(1). Disin V.

Example. V = CJ[0, 1] the set of continuous functions from 0 to 1. I(f) = fol g(x)f(z) dz. Then
IeV.
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Theorem. dim(V) =n = V = V'. Moreover, {¢1,...,¢,} is a basis of V'. Let {e1,...,e, be a

basis of V.
i(e;) = 0ij

soarf 1 i=j
TEV0 it

where §;; is called the Kronecker symbol.

Proof.

(1)
We claim that for all ¢ € V', ¢ = > 7| Xig.

Theorem. V= V" = (V')'. ®:V — V" defined by @y (¢) = ¢(v), for all ¢ € V' is an isomorphism.

Proof.
Consider {e1,...,e,} abasis of V, with v = """ | \;e;. Taking ¢;,

0=0i(v) =D Nidjle) = Y Nidji = A
i=1 i=1
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13 Row and Column Spaces

Definition (Row Space). The row space of a matrix M is the space spanned by its row vectors.

Definition (Column Space). The column space of a matrix M is the space spanned by its column
vectors.

Definition (Row Rank). The row rank of a matrix A is the dimension of its row space.

Definition (Column). The column rank of a matrix A is the dimension of its column space.

Theorem. Let A € F™™. Then

rowrank(A) = colrank(A) = rank(A)

Example. [I 2 3 4 5] € RY®. Here rowrank(A) = colrank(A) = rank(A4) = 1.

[(1) ? i)] € R?3. Here rowrank(A) = colrank(A4) = rank(A) = 2.

Definition (Duel Map (Operator Adjoint)). Let 7' € L(V,W). Its duel map T € L(W', V') is

defined by
T (p) = poT, Yoe W
i.e.
T'()(V) = ¢(T'v)
for all v € V.

Example. D : P(R) — P(R)
p(z) = p'(2)

o € L(P(R),R). 1
(o)) = /0 2p() de

D'(¢)(p(x)) = ¢ o D(p(x))

— /01 zp'(z) dz = p(1) — /Olp(m) dx

=)~ [ po) do

Lemma. ()" : L(V, W) — L(W', V') is linear, i.e.
Q) (T+9)=T+5
(2) (A\T) =1’

Moreover, S € L(V,W), T € L(U,V).

(ST) =T'S’

Proof.
(ST) () = @ o (ST)
=(poS)oT
=(Sp)oT
=T"05'(¢)
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Example. Let A € F™"
Definition (Transpose of a Matrix). In AT,
T def

a;; = Qij

Lemma. A, B € F"™"™. Then
(1) (A+B)T = AT + BT
(2) (AT = \AT
(3) (AB)T = BT AT

Proof of (3).
(AB)]; = (AB);;
= AjB
k=1
=D (A7) (BT )ax
k=1
as desired.

Lemma. Let T € L(V,W). Then
M(T") = (M(T))"

Proof.
BV = {61,...,dn}, BW = {fl,...,fm}

BV’ = {Sola"'agon}a BW’ = {1/117~-~,1/)m}
vile;) = 0ij,  Yr(fi) = Om

(M(T))ij = Aij, (M(T"))ij = Bij-
Our goal is to prove that B;; = Aj;.

i)=Y Brjow
k=1

Taking any e,, 1 <r < n,

¢] er ZBkjgbk er ZBk](Skr = Br]

k=1

On the other hand,
T'()(er) == ¢5(T(er))

= d’]’(Z Aprfp) = ZApr¢j(fp)

p=1
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Definition (Annihilator). V is a vector space. Consider U a subset of V. U° = {p € V' | o(u) =
0, Yu € U} is called the annihilator of U.

Example. Consider R3. Suppose U is a line OX. The annihilator of U is all functions that map the
Z axis to zero.

Lemma. Consider U C V a subspace. Then

dim(U) + dim(U°) = dim(V)

Proof.
BU = {61,...,6m}
Extended basis By = {e1,...,em,€1,...,€x}. Dual basis Byr = {©1,..., ©m, b1, Ok}
pilej) = 0,0i(€;) = 0,p;(e;) = i
$i(€5) = ij
pelU°
U® = Span(séh LR QOAk)

m k
»= Zai% + Zbﬂﬁj
i=1 j=1

Lemma. T € L(V,W).
(1) Null(T") = (Range(T))°
(2) dim(Null(T")) = dim(Null(T)) + dim W — dim V

Proof.

(1)

Taking any ¢ € W',
0=T'(p)=¢poT &YveV,0=¢poT(V)

(Range(T))° C Null(T")

dim(Null(7")) = dim((Range(T))°)
= dim W — dim(Range(T))
=dimW — dimV + dim(Null(T))

Lemma. T € £(V,W). Then
(1) dim(Range(T”)) = dim(Range(T'))
(2) Range(T") = (Null(T))°
(3) T injective if and only if 7" surjective
(

4) T surjective if and only if 7" injective

Proof.
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dim(Range(7")) = dim W — dim(Null(7"))
= dim W — dim(Null(7"))
=dimV — dim(Null(T))
= dim(Range(T))

Range(7") C (Null(T))°
T/((p) =@o T

Taking ¢ € Null(T),
0=¢poT(V)

T'(p) € (Null(T))°

dim(Range(7T")) = dim(Range(T))
=dimV — dim(Null(T))
= dim(Null(T"))°

Now we show our original theorem in one step:

colrank(A) = dim(Range(A)) = dim(Range(A’)) = dim(Range(A”)) = colrank(A”) = rowrank(A)
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14 Precept 5:

14.1 Unusual Property of Quotient Spaces

I will not include the comparison between 3.E.20 and 3.E.18 from the textbook in these notes.
The question we now ask is when does a map V' — W “descend” to a linear map V/U — W?

Theorem (Universal Property of Quotient Spaces). If U C V is a subspace, there exists a space
V/U and a linear map 7 : V' — V/U satisfying the following universal property:

For every linear map T': V' — W such that U € null T, there exists a unique linear map S : V/U — W
making the diagram commute:

Proof.
Define V/U and 7 : V — V/U as in 3.83 and 3.88. S exists and is ungieu by 3.E.18 and 3.E.20(b). W

“Giving a map T : V — W such that U C null T is the same data as giving a map V/U — W”

Example 3.91d. V/(null T) — W induces an isomorphism V/(null T') — range T

Corollary. Consider U C V a subspace. Let m; : V — X; and s : V — X, be two linear
maps satisfying the universal property for the quotient 7 : V' — V/U. Then, there exists a unique
isomorphism ¢ : X7 — X5 such that for all T': V' — W where U C null T', the diagram commutes.

A slogan for this is: “If two objects/maps satisfying the same UP, they are isomorphic in a unique
way making all the data compatible”

14.2 Examples of Quotient Spaces

Example. T : P(F) —» P(F), f — Z—J;

41



15 Eigenvalues and Eigenvectors

Before we start, a quick distraction.

Theorem. Every polynomial p € P(C) has a root in C.

Corollary. Every polynomial can be factored as

p(z)=A(z—2z1)(z—22)...(2 — zpn)

Ok now we go back to the main topic. The word Eigenvalues comes from the word Eigenwart.
Consider V =U @& W and a transformation 7. We want to know what U satisfy T : U — U?

Example. Consider T : R® — R3 such that Te; = e3, Tes = —eq, and Tes = e3. Then we can write
R*=R2, &R,

Since dimR, = 1 and TR, = R_, any vector along R, is an eigenvector. An eigenvector is a vector
that only gets scaled under a transformation 7T'.

Definition (Eigenvalue and Eigenvector). Let T € £(V). A € F is called an eigenvalue if Jv € V'\{0}
such that

Tu = X\v
In this case, v € V\{0} is called an eigenvector.
Example.
A 0 0
A=10 X O
0 0 As
A€1 = )\161
A62 = )\262
A€3 = )\363
SO e1, €, €3 are eigenvectors.

Lemma. Let dim(V) < co. T € L(V) and X € F. Then the following are equivalent:
(1) X is an eigenvalue
(2) T — AI is not injective
(3) T — AI is not surjective
(4)

4) T — M is not bijective

Proof.

A is an eigenvalue is equivalent to there exists v € V\{0} such that Tv — Av = 0 which is equivalent
to (T — Al)v = 0 which is equivalent to T'— AI is not injective. The rest being equivalent is a previous
theorem. |

Definition (Invariant Subspace). Consider ' € L£(V'). A subspace U € V is called invariant under
TiHTU)CU,ie TueUforallueU.
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Proposition. Let T' € £L(V) and Aq,..., A, be distinct eigenvalues. If vq,...,v,, are eigenvectors

with respect to A1,..., A\, then vy, ..., v, are linearly independent.
Proof.
Suppose for contradiction that the are not linearly independent, so v, = Z;n:_ll kjvj. Then
m—1
T’Um =T Z kjl]j
j=1
m—1
T’Um = Z k‘jT’Uj
j=1
m—1
)\m’l)m = Z k‘j)\j’l}j
j=1
m—1
0= Z k?j()\m - )\j)vj
k=1
Since A, — A; # 0 (since they are distinct), vq,. .., v,m—1 must also be linearly dependent, and so on, so
v1 must be linearly dependent, a contradiction. |

Corollary. Let T' € L(V), dim V = n. Then there are at most n distinct eigenvalues.

Definition (Quotient Operator). T € £(V), U C V invariant under 7. Then

(1) Restriction operator T|y € L(U). This just means

Tly(u) = TU, Yu € U
(2) Quotient operator T/U € L(V/U).

T/Uw+U)=Tv+U

Theorem. Let V' be a vector space over C with dim V' = n. Then any T' € £(V) has an eigenvalue
in C.

Example. Consider P : C — C. p(2) = 3.7 _a;27 2 € C. Let T € L(V). p(T) = 37 a;T7 is
still a linear operator on V. T = I, T3v = T(T(Tv)) so everything is linear.

Lemma. Given p,q € P(F), T € L(V), then

(1) (pg)(T) = p(T)q(T)

(2) p(T)q(T) = q(T)p(T) (! This is not true in general, only here because these are polynomials)

Proof not shown.

Proof.

Let v # 0. We take T%v, Tv, T?v, . . ., T™v. Since the dimension of V is n which is less than n + 1,
these vectors are linearly dependent. In other words, there exists ag,...,a, € C such that

agv + a1 Tv+ ...+ a,T"v =0= p(T)(v)

where

p(z) =Y a2
§=0
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is a nonconstant polynomial in P(C). Thus,
p(z)=A(z—=X1)...(z — )

with A # 0. In other words
AT —MI) ... (T - DHv=0

Thus, suppose all of these factors are invertible. Then taking each inverse, we have v = 0, a contradic-
tion. Thus, there exists j such that T'—\; I is not invertible. so it is not bijective, so \; is an eigenvalue. B

Example. The fact that we used C in the last theorem is important. Consider V = R2. T'(z,w) =
(—w, z). Suppose there exists an eigenvalue A\. Then there exists z, w such that

(—w,z) = Az, w)
—w = A2,z = Aw

However, this is impossible. Thus there is no eigenvalue.

Definition (Upper Triangular). A = (a;;) € F™" is called upper triangular if a;; = 0 for all ¢ > j.

Theorem. Let T € L(V). V is a vector space over C, with dim V' < co. Then there exists a basis
B = {v1,...,v,} such that M(T') with respect to B is upper triangular.

Lemma. Suppose By = {v1,...,0y,} is a basis of V, and T" € L(V). Then the following are
equivalent:

(1) M(T) with respect to B, is upper triangular.
(2) Tw; € span{vy,...,v;} forall 1 < j <n.

(3) span(v1,...,v;) is invariant under T for all 1 < j < n.

Proof.

Tvy = aj1v1 € span{v; }
Tvy = a12v1 + ooy € span{vl,v2}

etc. so (1) and (2) are equivalent.
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16 Lecture 11:

Theorem. Consider T' € L£(V), V a vector space over C with dim V' < oco. Then 3 a basis B of V'
such that M (T, B) is upper triangular.

Proof.

Lemma. By = {vy,...,v,} basis of V. Pick T' € L(V'). Then the following are equivalent:
(1) M(T, B) is upper triangular
(2) Forall1 <j<m, Tv; € span{vs,...,v;}.

(3) Forall 1 <j<m, span{vs,...,v;} is invariant under T

Proof done previously.

We will prove it by induction on dim V' = n. For our base case, consider n = 1. Then we are done
because M(T) is a one by one matrix and we are done with any basis. Assume that the result holds for
any V with 1 < dimV < n—1. We now show that the statement holds for any space V with dimV = n.

By the existence theorem of complex eigenvalue to T, 3 € C an eigenvalue of T. Let us take
U = Range(T — \I).

(1) If dimU =0, T = AL

(2) dimU > 1. Then since A is an eigenvalue, T'— AI is not surjective, so Range(T — AI) is strictly
less than n.

We now claim that U is invariant under 7. In fact, for every w € U, Tw = (T — A )w + Aw. Since
(T —X)wisin U, and Aw is in U, Tw is in U as desired.

Thus, T|y is a linear operator. Applying the induction hypothesis, there exists a basis By =
{v1,...,v5} of U with 1 < k = dimU < n — 1 such that M(T|y, By) is upper triangular. Using the
Lemma, T'|¢(v;) € span(vy,...,v;) forall1 < j < k. U can be extended to By = {v1,..., Uk, Vks1,...,Un}
a basis of V.

Tv; = (T — M)v; + Mv; € span(vy, ..., v, v;) C span(vim. .., va, ..., 0;)

forall k+1<i<n. |

Remark. Couldn't we also prove this by doing some kind of column reduction on the matrix of B
with respect to an arbitrary basis?

Theorem. B = {v1,...,v,} is a bsis of V. Consider T' € L(V'). Assume that M(T, B) is upper
triangular. T is invertible is equivalent to each diagonal entry not equalling zero.

Proof.
We start with the reverse direction. Consider
A1
0 Ao
M(T,B) = .
0 O An
with A1,..., A, # 0. Since A\; # 0,
A 1
v = L —Tv; € Range(T)
A1 A1

1
Tvo = ayv1 + AUy = Vg = )\—(Tvg — ajv1) € Range(T)
2
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Repeating the above, v; € Range(T') for all 1 < j < n. Thus, Vg = {v1,...,v,} basis of V implies that
Range(T) = V. Thus, T is surjective, which implies that it is invertible.

We now conisder the forward direction. Since Tvy = A\jvy, T is invertible implies that A\; # 0. Since
Tve = a1v1 + Agua, if Ao = 0, the n"Tva = ajv; € Span(vy). Thus, span(Tv1, Tvs) = span(vy), but this
means they are not independent, a contradiction of invertibleness. Thus, Ay # 0. In general, although
we won’t show it again here, \; #0 for all 1 < j <n. |

Corollary. M(T, B) is upper triangular. Then the eigenvalues of T" are precisely the diagonal entries
of M(T, B).

Proof.
Consider
A1 — A
0 Ag — A
M(T — \,B) = . .
0 0 o A — A

A is an eigenvalue is equivalent to 7" — AI is not invertible, which is equivalent to A\ = \; for some
1<i<n. |

Definition (Diagonal Matrix). We say a matrix A = (a;;) € F™" is diagonal if and only if a;; = 0
for all ¢ # j.
Definition (Eigenspace). Let T € £(V) with an eigenvalue A € F.
E(\,T) = Null(T — AI)

is called the eigenspace of T with respect to .

Lemma. dimV < oo, T' € L(V) has distinct eigenvalues Ay, ..., A\;. Then Z;c:l E(X;,T) is a direct
sum.

Proof.
Consider u; € E(\;,T) for all 1 < j < k. Then

U1++Uk:0

implies that u; = 0 for all 1 < j < k (because of independence). So we have a direct sum. In particular,
k
> dim E(\;,T) < n=dimV
j=1

Definition. T € £(T) is diagonalizale if 3 a basis B of V' such that M(T, B) is a diagonal matrix.

Example. If '€ L(V'), dimV = n has n distinct eigenvalues, then T is diagonalizable. Let v; € V
satisfy Tw; = A\jv; for A\; # A; when i # j. Then B = {vi,...,v,} is linearly independent. We have

V=EO\,T)®EM,T)®...® EO,T)
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Theorem. T € L(V), dimV = n < oo, consider Ay, ..., A\, distinct eigenvalues. Then the following
are equivalent:

(1) T is diagonalizable
(2) V has a basis consisting of eigenvectors of T'

(3) 3 1 dimensional subspaces U; ... U, C V such that

Jj=1
(4) -
V= ENT)

j=1

(5) -
dimV = "dim E();,T)
j=1
Proof Sketch.

It is easy to show by definition that 1, 2, and 3 are equivalent. Also, 2 implies 4 by the lemma and
definition of basis. 4 is equivalent to 5. We now show 4 implies 2. E(\;,T') has dimension d; and basis

B; = {v} 9 }. We would like to check that all of these base elements are linearly independent.

J’ ],..., ]

d;

i ajkv =0

j=1k=1

Since (Zk L ajrvl) € E(A\T) for each j,

d;

k_
Z ajRpv; = 0
k=1

for each j. Thus,
Ak = 0 Vj, k

so all of them are indpendent as desired, so they form a basis for the entire space, as desired. |

Corollary. T € £L(V), dimV = n has n distinct eigenvalues. Then T is diagonalizable.

16.1 Changing Bases

Lemma. B;, By, B3 bases of V. S,T € L(V).

M(ST, Bl, B3) = M(S, BQ, Bg)M(T, Bl, BQ)
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Example. wy =Y. | Pav;, we = Y i Piav;, etc, so w, = Y i | Pipv;. We have

P11 P12 ... DPin

P21 P22 ... DP2n
(wi,...,wp) = (V1,...,0n) | . . ]

Pn1l  DPn2 <o+ Dnn

we have P = M(I, By, By).

Corollary. Consider By, By bases of V. Then
M(IvBl’B2) : M(I’BlaBQ) = M(I7BlaBl) =1

M(I, By, Bs) - M(I, Ba, B1) = M(I, By, Bo) = I

Theorem. U, V two bases of W.
A= M(I,UYV)

then M(T,U) = A=*M(T,V) - A.

Proof.

M(T,U, V) = M(TI,U,V)
= M(T,V,V)M(I,U,V)
=M(T,V)-A
M(T,U,V) = M(IT,U, V)
= M(I,U,V)M(T,U,U)
= AM(T,U)

AM(T,U) = M(T,V)A = M(T,U) = A *M(T,V)A
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17 Precept 6:

17.1 Change of Basis and Diagonalization

Example. Consider the reflection about the line spanned by ; € R3. We call this the transformation
3

T : R? — R3. We don’t know much about arbitrary vectors, but we do know about the vetors in the

plane perpendicular to % . The plane is defined by z + 2y + 3z = 0, since ; is the normal vector

to the plane. On this plzne, any vector gets mapped to its additive inverse. 3For example, we know

immediately that

1 1
T 2| = |2
3] |3
-4 e
T|o|=-]0
._1_ ._1_
- -
T 1|=-]1
_0_ _O_

Notice that the first vector above is an eigenvector with eigenvalue 1 and the second two are eigen-
vectors with eigenvalue -1. Also, notice that these three vectors form a basis for R3. We can now
write the matrix of the transformation with respect to these bases:

1 0 0
M(T, (vi,v05,v3))= |0 —1 0| =B
0 0 -1
To find M(T, (€1, €3,€3)), notice that we have a map B from the €; to the A;e;, and we can use
1 -3 -2
S=12 0 1 | to transform from the \;e; to the Tw;, and S~ to go from the v; to the e;. In
3 1 0

other words,
M(T, (61,62, 63)) = SBS_l

17.2 An Eigenvalue/Eigenvector Example

Example (Exercises 5.C.16). We define the Fibonacci sequence as F; = 1, F» = 1, and F,, =
F, 1+ F, 5 forn > 3. How do you write down a closed formula for F,,? The idea is that we can
use eigenvalues and eigenvectors to solve this problem. (I love this problem)

We are going to use the following linear operator: T € L(R?), T(x,y) = (y,x + y).

=}

We start with the following claim: 77(0,1) = (F,, Fy+1) for all n > 0. We now induce on n
(smh apparently its induce but | like induct more). When n = 1, T1(0,1) = (1,1) = (F, F») by
definition. Assume T"~1(0,1) = (F,, Fyy1). Then T7(0,1) = T(T"1(0,1)) = T((Fp, Fruy1)) =
(Frt1, Fn + Fry1) = (Ft1, Frt2) as desired. Thus our claim is true. We now ask: what are the
eigenvalues of T'7

T(z,y) = Nz,y)
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(z,2 +y) = Az, \y)
T =T
T+y=A\y
z+dz=XNz=>0=0-A-1z=0

Since £ = y = 0 does not yield a valid eigenvector, A> — X\ — 1 = 0. We thus have

C1+V1I+4  1+45

A
2 2
so we have two possible eigenvalues:
1 5 1—+/5
M = 4—x/7’ Ny — V5
2 2
1
Consider v; = (1, +2\/5). Then
TUl = )\11}1
i i : 1-+5
so Ap is an eigenvalue (left to the reader/watcher). Consider vo = (1, > ). Then

TUQ = )\2 V2

so Ay is an eigenvalue (left to the reader/watcher). We can now diagonalize T'. The reason we want
to diagonalize T is that taking power with diagonal matrices is easy (whereas it is hard for arbitrary

matrices). For example,
A Y
Y I "

For this T', v; and vy form a basis consisting of eigenvectors.
We now want to compute 7™ (0, 1) using this basis/diagonalization. We have

M (ee) = | 3] =4

M (o) = [ | =B

We have
A=S8BS™!

1 1

where S = [M Ao

] . Now,

A" = (SBS™')" =SBS™'SBS™'...SBS™' = SBIBI...IB = SB"S™!

We now have

~ |1+v6 1-V5 1-vV5\n
2 2 ( 2 ) 10
AL -Ag
= lx?+fﬁ3;+2 ::[Pfh ]
\/5 n+1
1, 14+v5, 1-5 .
w&:§a2 )" = ()"
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18 Lecture 13: Inner Product Space

Remark. In this section we will be discussing only C and R as our fields.

Definition (Normed Space). A vector space V is called a normed space if ||- || : V — F satisfies the
following:

(1) [Jv]| > 0 with“=" if and only if v = 0.
(2) |A-v]| = |\ ||v]| for all A € F, v € V.
(3) lu+ || < |lul| + ||v]| for all u,v € V.

def

Remark. d(u,v) = ||u — v|| is defined such that
(1) d(u,v) =d(v,u) for all u,v € V
(2) d(u,v) >0, "="if and only if u =v
(3) d(u,v) < d(u,v) + d(v,w)

Example. V =R", [[v||, = (X

L viP)YP, p > 1. You should try to show the result by
Minkowski: (Minkowski inequalityS

|lu+ollp < lullp + o]l

Definition (Bilinear Form). A function ¢ : V x V — F is called a bilinear form if
(1) ¢(u,-) e V' forallu e V
(2) p(,v) eV forallveV

Example. V = R".

n
d_ef
Uu-v= E ’LLJ’U]
j=1

Definition. Let V be a vector space over R. A bilinear form ( , ) : V x V — R is called an
inner-product if

(1) (v,v) >0 for all v € V, “=" if and only if v = 0.
(2) (u,v) = (v,u) for all u,v € V.

V is called an inner-product space.
Definition. Let V' be a vector space over F. A function (-,-) : V x V — F is called an inner-product
if

(1) For any u € V, define ®,,(v) = (v,u) € V'
(2) (v,v) >0 forallveV, = if and only if v =0
(3) (v,u) = (u,v) for all u,v € V.

V is called an inner-product space.
Example. V = C".
n
uw-vE Z UV
=1

This is called an Hermitian Product.
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We now define define the norm of an inner product space:

1
llv]] = {v,v)>

Lemma. Consider V' an inner product space.
(1) (u,0) = (0,u) =0 for all u € V.
(2) (u,v+w) = (u,v) + (u+ w) for all u,v,w € V
(3) (u, \v) = Mu,v), for all u,v € V, A € F.
(4) ||v|]| =0 if and only if v = 0.
(

5) [IA-vll = [Al-[lvll

Proof.

(1)

0,u) = (v —v,u) = (v,u) — (v—u) =

{0+ w) = o+ w,0) = (o, 0) + (0, 0) = (u,0) + (u, w)
Definition (Orthagonality). We define « L v orthogonal if (u,v) = 0.

Lemma. 0 € V is orthogonal to any vector, and 0 is the only vector which is orthogonal to itself.

Proof.
The first part follows from property one of the previous Lemma. The second part follows directly
from property 4 of the previous Lemma. ]

Theorem (Pythagorean Theorem). For any u L v,

[l + vl? = [Jul® + [[o]

Proof.

[+ 0l* = (u+v,u +v) = (u,u) + (u,0) + (v, u) + (v,0) = (u,u) + (v,0) = [u|* + ||v]]*

Theorem (Cauchy-Schwarz Inequality). |(u,v)| < [|u]| - ||[v]|, with “=""if and only if uw = Av for
some A € F.

Proof.

(u—Av,u—Av) >0
for all A € F. The left hand side is

<u7u> - >‘<Uvu> - 5‘<ua 'U> + |)\|2<U,U>

Lemma. Suppose az? + bz +c¢ >0, a > 0 is rue for all z € R. Then b? — 4ac < 0.
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Using this lemma, if we work in R, then
[(u, 0)]* < (u, u) (v, v)

which is the square of our desired result of the Cauchy Schwarz inequality. |

Remark. Waw another really sweet proof of the Cauchy-Schwarz Inequality :heart_eyes:

Lemma. u,v € V, A€, v # 0. w = u + v satisfies (w,v) = 0 if and only if A = —

Proof.

(w,v) =0< 0= (u,v) + ANv,v)

with v # 0,
{u, v)
(v, v)

We can now show another proof of the Cauchy-Schwarz Inequality:

Proof.

u=w — v implies that ||u|?> = ||w||® + [A]?||v[|* > |A]*|v||?>. We now simply plug in the result from
the previous lemma to get the Cauchy Schwarz inequality. |

SA=—

Corollary. Yu,v € V,
[l = [l < llu+ || < [Jul| +[|v]]

with equality if and only if u = Av for some A € .

We only prove the second part.
(u+v,u+v) = (u,u) + (u,v) + (v,u) + (v,v)
< (s u) + 2w, v)| + (v, )
< (u, ) + 2f[ul] - [[v]] + (v, v)
= (lull + llvll)?

Corollary. Any inner-product space is a normed space if ||v]| = (v,v)2 for all v € V.

Remark. If V is a vector space over R and we have a basis {ey,...,e,}, and we write v,w in
components, v = (v1,...,0,) and w = (w1, ..., wy).

n n n
(v,w) = (Y vje;, Y wrer) = Y {ej, ex)vjwy
j=1 k=1 G k=1

w1
= (’Ul,...,?}n)A

Wn,
A = (aij), ai5 = (ei, €5)

In the case of the dot product a;; = d;5, so A is the identity.

Diagram representing how abstract everything is:
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Metric Space

Normed Space

Inner Product Space
A specific example is the dot product for R™.

Definition. A list of vectors B = {v1,..., vy} is orthonormal if (v;,v;) = d;; for all 1 <4, j < m.

Lemma. ey, ..., e, orthonormal implies that

m m
1> asell? =" la;)?
j=1 j=1

for all a; € FF.
Corollary. ey, ..., e, are orthonormal implies that they are linearly independent.
Lemma. B = {ej,...,e,} is an orthonormal basis of V. Then for all v € V,

(1) v=3711 (v e5)e;
(2) [l = X272, (v1, 5)?

Proof.

Vv =aie; +asey+...+amem
For any 1 < k < m,

Jj=1

m m m
(v, ex) = (Z ajej,ex) = Zaj (ej,ex) = Z%Q‘k = ag
Jj=1 j=1

Part (2) follows from the Corollary.
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19 Lecture 15: Orthogonal Complements/Adjoint Operator

Let U C V.
Ut ={veV|{u) =0VucU}

Proposition. Let U C V with dimU < co. Then V =U @ U+,

Proof.
Let {e1,...,em} be an orthonormal basis of U. Then for all v € V, we define

U= (v,e5)e;
=1

Now note that
<1) - ua6k> = <v76k> - <u76k> = <’U,€k> - <Uvek> =0

Thus v =u+ (v—u),s0 V=U+U".

Lemma.

(1) If U C V is a subset, then UL C V is a subspace.

(1)
0 € Ut by definition. Notice that U is closed under addition: if v,u € U, then
(v+w,u) = (v,u) + (w,u) =0+0=0

Notice that U~ is closed under scalar multiplication since v € U+ = \v € U~ for all A € F. Thus, U+
is a subspace. |

Corollary. dimV < oo, U C V subspace. Then dimV = dimU = dim U+.

Corollary. Let U C V satisfy dimU < co. Then (U+)+ =U.

Proof.
For all u € U, (u,v) = (v,u) =0 for all v € U+, so u € (UL)t. Thus U C (U+)*.
Taking any v € (U+)*, v = u +w, with w € U and w € U*.

0= (v,w) = (u,w) + (w,w) =0+ (w,w) = (w,w)

sow=0. Thusv=u € U, so (U1)+ CU as desired. [ |

Corollary. Assume dimV < oco. ®|y1 € Hom(UL,U%) is a canonical isomorphism. Here ® &
Hom(V,V"). ®,(w) = (w,v).

In other words, the isomorphism ® from V to V' is also an isomorphism between U+ and U°.
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Definition. Consider U C V, dimU < co. Py € L(V). Py(v) = U, v = v+ w, with u € U and

weUt.

Theorem. U CV, dimU < co. Then forallv eV, uw € U,

lv = Py (@) < lv—ull

with equality holding if and only if u = Py (v).

Proof.
lv = Pu(0)[]* < [lo = Py ()|* + || Pulv) —ulf?

=|lv —ul®

Example. O([0,27]) =V, U = span(sin , cos z, sin 2z, cos 2z). Inner product defined:

1 2m
(fr9)=— | f(x)g(z) dx

™

Given v(z) = x, find an element in U which minimizes the distance ||v — u|| for all w € U.

1 2m 1 2m 1_ 2
—/ (sinac)Qd:c:—/ #dmzl
0 0

i ™
1 27
—/ (cosz)? dz =1
T Jo
[|sin2z|| =1 = || cos 2z||

27 2m 2m
/ sin(ma) sin(nz) dz = 0/ sin(ma) cos(nz) de = / cos(mz) cos(nx) dx
0 0 0

Py (v) = aysinz + by cos & + ag sin 2x + by cos 2z

Note that )
/ x cos(mzx) de =0
0
27
2
/ xsin(ma) dx = T
0 m
. . 2
with (v, sinmz) = ——.
m

19.1 Adjoint Operators
Definition (Adjoint). Let T € Hom(V, W), T* : W — V is called the adjoint of T if (T'v,w)

(v, T*w) for all v € V,w € W.
T is self adjoint if T = T™*.
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Lemma. T € Hom(V, W), S € Hom(W,U), XA € F. Then the following holds:
(1) T* € Hom(W,V)
2 (S+T)*=5*+T*
(3) (MI)* = AT*
(4) (T7) =T
(5) I* =1
(6) (ST)* =T*S* (here let T € Hom(U,V) and S € Hom(V, W))

Lemma. T € (V,W).
(1) Null T* = (Range T)*
2) Range T* = (Null T)*
)
)

4

(2)
(3) Null T = (Range T*)*
(4) Range T = (Null T*)+

Definition. A = (a;;) € F™". Its conjugate transpose B = (b;;) € F™™ is defined by b;; = a;;.

Theorem. T € Hom(V,W), By = {ei1,....em}, Bw = {fi,...,fn} orthonormal. Then
M(T*, Bw, By) is the conjugate transpose of M(T, By, By).

Proof.

n

Tej = Z<T€j, f1>f2

=1
aij = (T'ej, fi)
bij = (T* fj,ei) = (f;, Tes) = (Tes, ;) = aji
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20 Lecture 16: Spectral Theorems

Definition (Self-Adjoint). T' € £(V) is called self-adjoint if 7' = T*.

Lemma. T € L(V) is self-adjoint, then each eigenvalue of T is real.

Proof.
Suppose v # 0 is an eigenvector such that Tv = \v.

Mov,v) = (Tw,v) = (v, Tv) = (v, W) = Mv,v).

Since (v,v) # 0, A = \.
Consider T € L(V). T=0< (Tv,w) =0 for all v,w € V.
Facts (Polarization).

(1) F =R, T self-adjoint, then
<T(’U + U}),’U + ’LU)> — <T(U — ’LU),U — U}>

(Tv,w) =

Proof.

difference = 4(Tv, w)

Remark. Substituting 7' = I to the above lemma, we get

v+uw|?—|lv—w|?
(o) = Lot wlf = Ilo = vl

(2) F=C, T e L(V)

(T4 w),v+w) —(T(v—w),v—w) +i<T(v+iw),v+iw>—<T(v—iw),v—iw>
4 4

(Tv,w) =

Lemma. V :inner product space over IF, and T' € L(V).
(1) Suppose F =R, T is self-adjoint. Then (T'v,v) =0Vv € V = T = 0.
(2) Suppose F=C, T € L(V). Then (Tw,v) =0Vv € V = T = 0.

Corollary. Suppose V is an inner product space over C, and T' € L(V'). Then

T self-adjoint < (Twv,v) € R

Proof.

(Tv,v) — (Tw,v) = (Tv,v) — (v, Tv)
= (Twv,v) — (T"v,v)
= (T —T")v,v)

(Tv,v) e R < (Tv,v) — (Tv,v) =0
S (T -T,v)=0Yv eV
T =T"
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Definition (Normal). T € £(V) is Normal if TT* = T*T.

Lemma. T € L(V) is normal. Then ||Tv|| = ||T*v|| for all v € V.

Proof.
(T, Tvy = (v, T*Tv) = (v, TT*v) = (T"v, T*v).

Lemma. Suppose T € £(V) is normal. Let v # 0 satisfy Tv = v for some A\ € F. Then T*v = \v.

Proof. -
(T = AD)vl| = [[(T™ = AL)v]|

v is in an eigenvector of T" with respect to A is equivalent to v being an eigenvector of 7™ with respect
to A. |

Lemma. Suppose T' € L(V) is normal. Take \ # p different eigenvalues, and let v and w be their
corresponding eigenvectors.

{ L0 =, =v lLw

Tw = pw

Proof.

Av,w) = p(v, w)
= (Av,w) = (v, fw)
= (Tv,w) — (v, T*,w)
=0
Since A\ # p, we can multiply both sides by (A — )™, so (v,w) = 0, and v and w are perpendicular as
desired. m

We can now get into Spectral Theorems. Take T € L(V). & = {\1,...,A\m) with Aq,..., Ay
eigenvalues is the spectrum of 7.

Remark. The spectrum of T is like the soul or ghost of T'.

Theorem (Complex Spectrum). Consider T' € L(v), F = C. Then the following are equivalent:
(1) T is normal
(2) V has an orthonormal basis B consisting of eigenvectors of T'

(3) V has an orthonormal basis B such that M(T, B) is diagonal

We now consider the matrix version.

Definition (Matrix Similarity). We say 7' ~ S (similar) if 3 an invertible matrix P such that
T =P 1SP.

Then we are saying that there exists a matrix similar to the matrix of T that is diagonal.

We now complete the proof of this theorem.

Proof.
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By Schur’s Theorem, there exists an orthonormal basis B such that

ay; a2 ... ... Qin
0 azo ... ... Q2n

M(T,B)=10 0
0 0 ... ... anpn
The jth column of the above matrix corresponds to Te;.
n
1T*er]|* = [|Ter|[?, Y las;* = |ans|?
j=1
la11? + |arz* + ...+ |ara]* = |ai [?

1T ea||* = ||Tez|”

n
1T ea]|* = [|Tea|*, Y lag;|* = |aza|?
=2

|a23|2 +...+ |a2n\2 =0

so the matrix is diagonal.

Theorem (Real Spectrum). Consider T' € L(V'), F = R. Then the following are equivalent:
(1) T is self-adjoint
(2) V has an orthonormal basis B consisting of eigenvectors of T'

(3) V has an orthonormal basis B such that M (T, B) is diagonal

Lemma. T € L(V) self-adjoint, b, c € R such that b — 4c < 0. Then T2 + bT + cI is invertible.

Proof.
(T% + T + cI)v, v)

= (Tv, Tv) + b{(Twv,v) + c(v,v)
> [|To][* = bl Twlll]v]] + cllv]?

(B (52)-)

Note that 22 — bz +c¢ > 0 for all z € R if b> — 4¢c < 0. Thus, the above expression is greater than 0.
Thus, if the above is zero, then v = 0, so T? + bT + cI is injective and thus invertible as desired. |

Proposition. Consider T' € L(V) self-adjoint. T" has an eigenvalue.

Proof.
Considering v # 0, v, Tv, T?v, ..., T™v is linearly dependent. Thus, there exist not all zero numbers

En: ajij =0
j=0

In other words, there exists some polynomial p such that

a; such that

p(T)v=0,p(T) = ZajTj
§=0
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Recall that for any real polynomia,

plw) = el (2% = bz + ¢)) T2 (@ — \y)

with bf —4c; < 0 for all . We also have k4+m > 1. Then all the quadratic factors are invertible, so one
of the linear factors must not be invertible, giving us an eigenvalue. |

Lemma. Consider T' € £(V) a self-adjoint transformation, and consider an invarient subspace U.
Then

(1) U+ is invariant under T
(2) T|v is self-adjoint

(3) T'|yz is self-adjoint

Proof.
(1) weUtueU, (Tw,u) = (w,Tu) =0

(1) = (2) Ter = Aiey, Uy = span{ei }, Ty is self-adjoint. This gives us another eigenvector e;. We continue
this process.
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21 Lecture 18: Polar/Singular Value Decomposition

Theorem (Polar Decomposition). Suppose T' € L(V'). Then 3 an isometry such that 7' = S-v/T*T.

Remark. Since T*T is self-adjoint, it is diagonalizable, so it is a dialation. The above theorem says
that we can break any transformation 7" into an isometry S and a dialation V7T*T'.

Theorem (Singular Value Decomposition). Given T' € L(V) with singular values s1,...,s,, 3
orthonormal bases By = {e1,...,en} and By = {f1,..., fu} such that Tv = 377, s;(,e;) f;.

S1 ... 0
T = M(T,B1,By) = :

Theorem (Spectral Theorem). For any self-adjoint operator 7' € R™", there exists an orthogonal
matrix P € R™" such that T = PDP~! and

0 ... M

Remark. This is basically saying there is a change of base P from T to D.

Definition (Unitary, Orthogonal). V = C", P is called a unitary matrix if PP* = P*P =1. V € R",
P is called an orthogonal matrix if PPT = PTP = 1.

Theorem (Matrix Version of the Singular Value Decomposition). If (ey,...,e,) = (v1,...,v,)V
and (f1,.-.,fn) = (v1...,0,)U then T = UXV L

Theorem. T € [:(V) M, = M(T7 Bl), My = M(T, Bg) B = {61,.. .,en}, By = {fl; .. ,fn}
B(): {vl,...,vn}.

(e1,..-ven) = V1, s 0n) Py (fry-eosfn) = (v1,...,0,)Q

Then
M, =Q M P

Proof.
We define Q = vT*T with Qe; = sje;. By applying the polar decomposition, there exists an isometry
S such that T'= SQ. We define f; = Se;.
T61' == SQ@Z == S(siei) == 515(61) == Slf’L

as desired. m

Lemma 1. Given T' € L(V), then ||Tv|| = |[VT*Tv|].

Proof.

(VT*To, VT*Tv) = (v, T*Tv) = (Tv,Tv)
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We have shown that there is an isometry from the range of VVT*T to T given by S(v/T*Tv) < Tv.

Note that since X R
[IS(VT*Tw) — SWT*Tw)|| = ||[VT*Tv — VT*Tw|| =0

By definition, S is also surjective.

Lemma 2. Suppose we have two inner product spaces with dim V' = dimW. Let Vi CV, W1 C W
with dim V4 = dim W;. Then any isometry T from V; to W; extends to an isometry T from V to
w.

Proof.
Consider By = {ei,. .., €, } an orthonormal basis of V. Consider By = {fi,..., fm} an orthonormal
basis of Wit. Define () mapping from Vi- to Wit by Q(e;) = f;. V=Vi& V-, W = W; & Wit

Tv="T(u+w) =Tu+ Qu

where € Vi and w € Vi*. Then T : V — W is an isometry.
We now prove the Polar Decomposition Theorem.
Proof.

dim(Range VT*T) = dim(Raneg T') + dim(Null )

Sinceﬁ is injective (since it is an isometry), dim(Range vT*T) = dim(Range T'), we can apply Theorem
2 so S extends to an isometry S from V to V as desired. |
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22 Linear Operators on Complex Vector Spaces

A Dblocked diagonal matrix is a matrix that is diagonal but the things on the diagonals are square
matrices of the same dimension. Example:

SO W
O O =N
~N ot O O
o o O O

We would like to represent any transfrmation 7" as
T=pr'sp

where S is a blocked diagonal matrix.

Lemma. T' € L(V). Then

{0} =Null 7° C Null T* C Null T? C ...

Proof.

We show this via induction. For the base case, Null 7° = {0} C Null 7%, and for all k, if T%(v) = 0,
then TF+1(v) = T(T*(v)) = T(0) = 0 so Null T* C Null T**! so the result follows via induction as
desired. |

Proposition. Consider T € L£(V). If Null 7™ = Null T™*1, then for any k € Z*, Null T™ =
Null Tmtk,

Proof.
We only prove that Null 7"** C Null T7™. Let v € V such that Tk (v).

0=Tm" () =T (TF(v)) = TF 1 (v) € Null 7! C Null T™

Thus T7™(T*~1(v)) = 0 = T™*+*~1(v) = 0. By induction, 7"*%(v) = 0, so Null 7% C Null 7™ as
desired. [

Proposition. Let 7' € £(V) with dim V = n. Then Null 7 = Null 71 = Null 77+2 .. ..

Proof.
We do a proof by contradiction. Suppose Null 7" C Null 7"*+!. By the previous propositions proof,

{0} =Null 7° c Null 7' € ... ¢ Null 7" C Null 7"+*

However, this means that n < dim Null 7" < dim Null 77! a contradiction. Thus Null 7" D Null 77!
and we are done by the proposition. |

Corollary. Consider T' € £(V') with dim V' = n. Then

V =Null T" & Range T"

Remark. Do we know when a transformation T has an nth root for n € N?
Proof.

WE only need to check Null 7" N Range T™ = {0}. Let u € Null 7" N Range T" = T"u = 0,
w = T"v. Then T?"v = 0 so v € Null T?". However, by the previous proposition, Null 72" = Null 7",
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so T™v = 0. Thus u = 0 as desired. |

Definition (Generalized Eigenvector). Consider 7' € £(V) with an eigenvalue A. Given any j € Z™,
a solution v # 0 of (T'— M\ )?v = 0 is called generalized eigenvector.

Given any arbitrary eigenvalue A, the set of all generalized eigenvectors of A and 0 € V is called the
generalized eigenspace with notation G(\, T).

Lemma. Consider T' inL(V') with A an eigenvalue. Then

G()\,T) = Null ((T _ )\[)dimV)

Proof.

Taking any v € G(A, T). Then 3j such that v € Null ((T' — AI)7).
Case 1. j <dimV

Then

Null ((T = AI)) € Null (T — AI)7*!) C ... C Null (T — ADU™V) = Null (T — APV ) = ..

Case 2. j >dimV
Then Null (T — A))” = Null ((T — AT)dim V)'
In both cases, Null (7' — AI)7) € Null ((T' = M) V) as desired. [ |

Proposition. Consider ' € L(V). Consider \y,...,\, distinct eigenvalues with corresponding
v1,...,0, generalized eigenvectors. Then vy, ..., v, are linearly independent.

Proof.

0=a1v1 +...+ anv,

Let k be the largest integer (which exists from the previous theorems) such that (T — AI)*v; # 0. Then
(T — )\1[)k+1’01 = 0. We denote w1, = (T — /\I)kvl.

(T — /\1[)11)1 = 0

so Twy = \wy. Let (T — A\ I)F H;L:Q(T — NI act on 0 = a1v1 + ... + apvy.
a [[(T = X\D"wi+0+...40=0
j=2

so a1 = 0. Similarly for the other coeflicients. |

Corollary. Consider Ay, ..., \, distinct eigenvalues. Then °7 | G();,T) is a direct sum.

Definition (Nilpotent). T' € £(V) is nilpotent if T = ( for some m € Z™.

Remark. Nilpotent is Prof. Ruobing's favorite word.

Lemma. If N € £(V) is nilpotent, then N4mV =0

Proof follows pretty quickly from previous lemmas.

Proposition. LEt N € L(V) be nilpotent. Then V has a basis B such that M(N, B) = (ai;)
satisfies a;; = 0 when ¢ > j.
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Remark. The lower triangular part is the zero part.

Proof.
By = {v11,...,v1x} basis of Null N. Extend B to B which is a basis of Null N2. After finite steps,

we obtain a basis B of V. Example: suppose v1,v3 € By, v1,v2,v3 € Ba, v1,v2,v3,v4 € Bs. Notice that
N(v1) = N(va) = 0. N(v3) € Null N, so v3 can be generated by v1,v2. N(vy) € Null N2, so vy can be
generated by vy, v, v3. etc.

Lemma. Consider T' € L(V), p € P(F). Then ker p(T'),Im p(T) are invariant under 7.

Remark. I'm switching to ker and Im because it's faster.

Proof.
Consider v € kerp(T'), so p(T)v = 0. Then (since p1(T)p2(T) = p2(T)p1(T))

Tp(T)v = p(T)(Tv) =0

Proposition. Consider T' € L(V), and \y,..., A\, is a spectrum of T'.
(1) V=L, G\, T)
(2) Each G(\;,T) is invariant under T’

(3) Every (T — A\jI)|g(x, 1) is nilpotent.

Proof.

(1)

We will prove G(\;,Ty) = G(A;,T).
We start by showing that G(A;,Ty) > G(A;,T). Taking any v € G(A\;,T) C V,

V=01 +v2+...+Un

where v; € G(\;, T|y). Generalized eigenvactors are linearly independent, so v1 = 0, v; = 0 if i # j so
We induce on n = dim V. For n = 1, it is trivial. Assume the result holds for any V with dimV < n.

For Ay,
V=%ker(T — )" ®Im(T — \I)"

=GO\, T)®U

Then dimU < n, so U is invariant under T by the inductive hypothesis.

V=GM\,I)a (é GNT|w))
j=2

G(\;,T) = Null(T — \;I1)¥™V is invariant under 7.

3)

By definition.
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23 Lecture : Blocked Diagonal Decomposition

Proposition. Consider V' a complex vector space, and T € L(V') with spectrum {\1,..., A, }. Then
1) V=G, TGN, T)® ... G\, T)
(2) G(\;,T) is invariant under T’

(3) (T = AjI)|a(x, 1) is nilpotent

Definition (Multiplicity). Consider T' € £(V'), with )\; an eigenvalue of T. Then algebraic multi-
plicity of \ is dim G(\,T) = dim Null (T — AI)4™V. The geometric multiplicity of A = dim F(\,T) =
dim Null (T — AI).

Corollary. Consider V with dim V' = n. Then the sum of the algebraic multiplicities is equal to n.

Theorem. Consider V' a complex space, with 7' € L£(V') with spectrum Aq,..., A,,. Let the multi-
plicity of A\; be d;. Then V' has a basis consisting of generalized eigenvectors such that

A ... 0
0 ... A,
where
Aj
a |0 ,
0 0 0 X

is a d; by d; matrix.

Proof.
To understand teh structure of A;, Consider T|g(, 1), the result when 7' is restricted to G(A;,T).

Tlax, ) = (T = X)lan, ) + Nillao, )

By the Proposition, (T — Aj)|c(x,,r) is nilpotent, which immediately gives the result (by the proposition
from the last lecture). [ |

Example. Consider

S

Il
O O =
O =N
N = W

with eigenvalues 1, 2.
Remark. Can't we use column reduction? Never mind, no mayyybe not.
G(1, 4) = span((1,0,0),(0,1,0)) G(2, A) = span((5,1,1))

V =G(1,4) ®G(2,A)

M(A,B) =P 'AP =

S O =
(el il V]
N OO
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Lemma. If N € L(V) is nilpotent, then I + N has a square root.

Motivation: Recall the taylor expansion:

VIFo=1+3+0@?
Proof. Suppose N™ = 0. We write
R=I+aN+aN?>+. .. 4a,_ N !
Then
R?* =T+ 2a;N + (a3 4 2a2)N? + (2a3 + 2a1a2) N> + ... 4+ 2am—1 +p(ar, ..., am_2))

1
We can now inductively solve this system so that a; = ok and each coefficient of further powers of NNV is

zero in the above. | |

Proposition. Consider complex vector space V, and T' € L(V) invertible. Then T has a square root.

Proof.

V=COT)®...® GO, T)
where \; # 0 for all j. On each G(\;,T),

Tlaox, ) = (T = XNDlaxg .o + Nillao, )
= N ATHT =N Dlaoym + 1)

()\j_1 exists since T is invertible) where the expression in the parenthesis is nilpotent. By the previous
1f3mma, R; = square root of T'|g(x, 1) exists. We define for v = vy +...+ vy, with v; € G();,T') for each
Js

Rv=Riv1+...+R,vm

then R is a square root of T since

R?*v=Rivy +...+ R v, =Tv

]

Definition (Characteristic Polynomial). Let V be a complex vector space with T € L(V) and

ALy -y Am a spectrum of T with distinct eigenvalues with multiplicities dy,...,d,. Then polynomial
p(z) = (z—A)% -...- (2 — \p)?% is called the characteristic polynomial.

Remark. :heart_eyes: :heart_eyes: :heart_eyes:

Remark. If dim V' = n, then deg(p(z)) = n.

Theorem (Cayley-Hamilton). Consider a complex vector space V with T € L(V). If q(2) is the
characterisitc polynomial, then ¢(7') = 0.

Proof.

V=G, T)®...0 GA\p,T)
ForveV,v=wv+...+ v, with v; € G(\;,T),



But p(T)vj = (...)(T — A\;jI)%v; = 0, which gives us the desired result. |

Lemma. Consider T € £(V) with dimV = n. Then there exists a unique monic polynomial p of
smallest degree such that p(T") = 0.

Proof.

Consider {I,T,T?,... ,T”2}. Since dim £(V) = n? < n? + 1, the list above is linearly dependent.
Let m be the smallest integer such that {I,7,T?2,...,T™} is linearly dependent. Then there exists
coeflicients not all zero such that

—

m—

G,jT] + " = 0
=0

<

We define ¢(z) = Z?:Ol a;jz’ + z™. Suppose §(z) = Z;n:_ol bjz? + z™. Then

—

(@—d)(2) = 3 (a — b))
0

Jj=

Then
m—1
Z(aj — bj)T] =0
j=0
however this is a contradiction of m being the lowest degree. Thus, ¢ = ¢. |

The monic polynomial from the above lemma is called the minimal polynomial.

Lemma. Consider T € L(V') and g € P(FF). Then ¢(T) = 0 if and only if ¢ is a polynomial multiple
of the minimal polynomial p.

Proof.
The if part is trivial. Otherwise, let ¢ = r-p+h where h has as smaller degree than p. Then h(T) = 0,
but this is a contradiction. |

Corollary. Consider T' € L(V) and p the characteristic polynomial, with ¢ the minimal polynomial.
Then 3r € P(F) such that p = rq.

Proposition. Let T € £(V'). Then the zeros of the minimal polynomial p are precisely the eigenvalues
of T.

Proof.
(1)
Suppose A is a zero. Then p(z) = (z — A)g(z), so
0=p(T)o = (T = A)(g(T)v)
But ¢(T)v must not be zero for some v since that would contradict minimality.
(2)

If A is an eigenvalue, then
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24 Precept : Jordan Form

Consider F = C and V = C3.

-1 0 1
Example. T : V — V is linear, Tv = Av where A = 0 2 —1(. We can write V =
-4 0 3

G\, T)® ... G p, T).

Notice that 2 is an eigenvalue corresponding to (0,1,0). Observe that E(2,T) = ker(4 — 2I) =
span(es).

Now we would like to find other eigenvalues. We will follow 5.21 (and compare this to Problem A
from PSet 10 after class).

Notice that with e; = (1,0,0), Te; = (—1,0,4), T?e; = (—3,4,—8), T3e¢; = (=5,16,—12). Then

0= —2¢e; +5Te; — 4T%e; + T3¢,

Define p(z) = —2 + 5 — 422 + 23. Then p(T)e; = 0. Note that p(z) = (z — 1)?(z — 2). We now
check \ = 1:
-2 0 1
ker(A—I)=ker [ 0 1 -1
-4 0 2
1
=span(|2|)
|2
so 1 is an eigenvalue. (This is an alternative way of checking that 1 is an eigenvalue). We have
1
E(1,T) =span(|2]).
2

We now consider generalized eigenspaces. Notice that
G, TYe G2,T) CV =dimG(l,T)+dimG(2,T) <dimV =3
Thus each eigenspace has dimension between 1 and 2. In other words,
G(1,T) = ker(A — I)?

G(2,T) = ker(A — 2I)?
Notice that
0 0
1

0

0

so dimG(1,T) = 2 and dimG(2,7T) = 1. Notice that we didn't actually have to notice that
G(1,T) = ker(A — I)%. Even if we had picked 2 arbitrarily, we would have found dim G(1,7) > 2 =
dim G(1,T) = 2.

We now find the characteristic polynomial: (z — 1)*(z — 2). The minimal polynomial divides the
characteristic polynomial. Also, the minimal polynomial and the characteristic polynomial have the
same set of roots. Thus, the minimal polynomial is either (x — 1)(x — 2) or (z — 1)?(x — 2).

0
1 0
=span(|—4]|,|3])
1
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Example (8.C.12). T being diagonal is equivalent to the minimal polynomial has no repeated roots.

Notice that
1 1
0 1

b i

has minimal polynomial (x — 1)? but

has minimal polynomial (z — 1).

Example. Going back to the original example, the minimal polynomial is (z — 1)%(z — 2).

Example.
[0 1 0]
0 0 1
10 0 0]
has minimal polynomial 23
[0 1 0]
0 0 O
10 0 0]
has minimal polynomial z2
[0 0 0]
0 0 O
10 0 0]

has minimal polynomial x.
Notice that the following two matrices have the same minimal and characteristic polynomials:

0100
0000
0000

0 0 0 0

[0 1 0 0]
0000
000 1

0 0 0 0

Example (8.C.15). Consider T, v #2 0 € V. Then
(1) There exists a smallest monic polynomial p such that p(T")v = 0

(2) pis a factor of the minimal polynomial

In the previous example, (z —1)?(z —2) is the minimal polynomial for 7" and ey, so (x —1)2(x —2)

(
is a factor of the minimal polynomial of T. Thus the characteristic polnomial is ¢ - (z — 1)%(z — 2)
in the above polynomial, but they m
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Theorem. Consider V' a complex space, with 7' € L(V) with spectrum Ay,..., \,,. Let the multi-
plicity of A; be d;. Then V' has a basis consisting of generalized eigenvectors such that

Ay ... 0
M(T,B) = | : oo
0 ... A,
where
Aj
0 \;
A= T
0 0 0 X

is a d; by d; matrix.

A matrix of the form with a diagonal containing the eigenvalue and the diagonal above having all 1s
is called a Jordan block. A basis as in the above theorem is called a Jordan basis.

Example.
SE NS
0 0 A 0 0 X 1
0 0 0 X
are Jordan blocks. Notice that in the first case above,
T’l)1 — )\’Ul =0

T’UQ — )\’UQ =1
TU3 — )\’Ug = Vg

so {vs, (T — Al )vs, (T — AI)?v3} is a basis, and notice that (T'— \I)3v3 = 0.

Theorem. Any matrix 7' € C™" is similar to its Jordan canonical form, i.e., 3 an invertible matrix P

such that
A ...0

P'AP =

where A; is a Jordan block.

Proof (using the Proposition below).
Consider V =G\, T)® ... ® G(Am,T). We denote

N; = (T = XD)lex,.m)

nilpotent. Then applying the Proposition, each block with respect to G(\;, T') is a Nilpotent block. Thus
Aj = Nj 4+ A\;1 which gives us the desired result. |

Proposition. N € L£(V) is nilpotent, then there exists {v1,...,v} C V and {k1,...,kn} C Ny
such that

_ [Nk 2 k 2 Fom 2
(1) B={N"vy,...,N%v1, Nuy,v1, N®2vg, ..., N*vg, Nug,va, ..., N*™vy ..., N*Up, NV, U }
is a basis of V'

(2) NFitly; =0forall 1<j<m
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Proof.

We show this by induction on n = dimV. For the base case n = 1, it is trivial. Suppose the
conclusion holds for any V' with dim V' < n. Consider V with dim V' = n. Taking any nilpotent operator
N € L(V), with N not injective (< N is not surjective). Thus dim(Range N) < n — 1, so we can apply
the inductive hypothesis on Range N. Notice that Range N is invariant under N. Denote N = NRange N-

N is nilpotent. By the induction hypothesis, there exists a basis
B= {Nklvl,Nkl_lvl, oo, Nvy,v1, N0y, ... NFy,, No =Ly, . Nog,u
of Range N. Notice that v; = Nu; for some u; since v; € Range IN. Then consider the basis:
é = {N*Hlyy, . Nug,ug, ..o, NO Py o Nag, )

Note that NB = B (by (2)). Now consider a;;.

1 k41
Z ai; N'uj; =0
j=1 i=0
Apply N to both sides. Then
1 k?jJrl
Z ai; N'v; =0
j=1 i=0

Then we have a;; =0 for all 1 < j <! and 0 <7 < k; by the inductive hypothesis since Nkﬂ""lvj =0 by
(2). Thus

l

§ : kj+1
ak;jJrl’jN it Uj = 0

Jj=1

l
k.
E :akj+1,jN v =0
j=1

Thus ag;+1,; = 0 for all j. Thus a;; = 0 fir all 4, 7, so Bisa linearly independent list. Then B can be
extended to a basis of V )
B=BU{ws,...,wp}

Observe that for all w;, Nw; € Range N, so there exists z; € span(B) such that Nx; = Nw;. We define
¢ =wj —x;. N(; =0 for all j. Then

B=NU{C,....p}

is also a basis, and it satisfies (1) and (2) as desired. By induction, the result is true. [ |
1 2 3]
A=|0 1 1
0 0 3

We can find that dim E(1, A) = 1, dim G(1, A)

2, dim E(3, A) = dim G(3, A) = 1. Then

J =

S O =

1
1
0

w o O

and we can find P such that P~' AP by working out that if the basis is v1, w, va, then Aw = w +v;.
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24.1 Trace

Definition (Trace). Consider A = (a;;) € F™™. Then Tr(A) = }"._, 6na;;.
For a complex vector space this is the sum of the eigenvalues counted with multiplicities.

Lemma. Consider A, B € F™"™. Then Tr(AB) = Tr(BA).

Proof.

(AB)ij =) ainby;
k=1

(BA)ij = > bijax,

k=1

Then it follows quickly.

Proposition. Consider T' € L(V'). Consider two bases A, B. Then Tr(M(T, A)) = Tr(M(T, B)).

Proof.
Notice that Tr (M(T, B)) = Tr (P~*M(T, A)P) = Tr (M(T, A)PP~1) = Tr (M(T, A)).

Theorem. Consider T' € L(V'). Then Tr (T') = Tr (M(T, B)) for all bases B of V.
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25 Lecture : Tensor Product of Vector Spaces

Definition (k-linear). A map ¢ : V3 X ... x V}, — V is called k -linear if ¢(v1,...,v;,...,v;) is linear
for eery v; as fixing all variables but v; to be constant.

Example. ¢(u,v) bilinear. On real vector spaces, inner product spaces are bilinear maps.

Definition (Tensor Product). For all vector spaces U and for all bilinear maps f : (V x W) — U,
then there exists a linear map

fVeWwW-=U
such that f(v®@w) = f(v,w). The diagram formed by V x W, V@W, and U with ®, f, and f commutes.

Remark. In category theory, we have a unique element with this universal property such that for all
other elements, we can push forward the special element to that. The above definition satisfies that.

The first most natural question is: dess V @ W exist?

Lemma. If tensor products exist, then they are unique up to an isomorphism.

Proof.
Suppose there exist two tensor products V @ W,V@W. By the universal property, there exists a
unique linear map ¢ : V@ W — V@W such that

R=po®
Similarly, there exists a unique linear map ¢ : VW — V ® W such that
@=1o®

Then ® =1 0 ¢ o ®. Now,
Thus ¢ o ¢ = I, so both are isomorphisms as desired.
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26 Precept: Missed

T unfortunately missed this precept (hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh-
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhl
ugh I wish I could’ve gone) and learned the material from the notes posted afterwards.

Therefore, this memory will be absent from my notes . . . ;(
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27 Lecture : Wedge Product, Determinant

Proposition. Let {e;,...,e,} be a basis of V. Then
(1) {e;, ®...®e;, |1 <id1,..., e, < n} basis of VEF

(2) {ei, AooiAey, | 1<y <,...,< e, <n} basis of V&

Definition (Tensor Product of Linear Functionals). ¢, ¢ € L(V,R), then ¢ ® ) € Mo(V,R) with
P ®Y(v,0) = p(v) - Y(w)
Definition (Wedge Product of Linear Functionals). ¢, € Ax(V,F), then
P A(v,w) = p(v) - P(w) — p(w)p(v)
Proof.
(1)
For k =2, if T € My(V,F), then

v = iaiei = Z wi(v)e;
i=1
i=1

T(o,w) = 3 Tlpiv)ew ¢ w)e;)
i,j=1
= 3 Tlewe))ow)e w)

1

21

S

= T(ei,ej)pi @ j(v,w)
ij=1
T =2 T(eie)p: @¢;
We want to show that .
Z aijpi ® p; =0
Q=1

implies that a;; = 0 for all 7 and j.

0= Z Q595 X cpj(ek,el)

i,j=1

n
= E 0301051 = Akl

4,5=1

Then {p; ®¢;}7';_; a basis of Ma(V,F) maps to a basis {e;®e;}7';_; a basis of V®V under the canonical
transformation. [

(2)
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Forn =3, k=2 L(VAV,F) 2 A(V x 0,F). If T € As(V x V,F),
3
> Tleire5)e(i)e(h)
=1

=T(e1, e2)p1(v)p2(w) + T'(e2, e1)p2(v)p1(w) + ... + T(ez, e3)p2(v)ps(w) + T'(es, e2)p3(v)pa(w)
=T(e1,e2)(p1 A p2) +T(e1,e3)p1 A w3 +T(e2,e3)p2 A w3
{wi Npjtic

generates Az(V,TF).
Definition. Consider T' € L(V). (A*T) € L(A*V) with

(A*T)(ei, Ao Nei) =T(ei,) A... AT (ei)

If k =n, dim(A™) =1,s0 e; A... Ae, basis of V. A"T € L(A"V) is the determinant of T

Example.

a a
T— |01 12| g2
az1 Q22

With e; = (1,0) and e3 = (0,1). Then

detT = (>\2T)(€1 A 62) = T61 A T62 = ((11161 aF a2162) A (a1261 aF a22€2)

= aj1022€1 N\ €2 + az1a12€2 N €1

= (a11a22 — az1a12)(€1 A €2)

Lemma. T € L(V).
(1) T € £(V) is invertible if and only if detT" # 0.
(2) T,S € L(V). Then det(T - S) = det(T) det(S).

(1)

T € L(V) not being invertible is equivalent to Ty, ..., Tv, being linearly dependent for {vy,...,v,}
basis of V. Then WLOG

n—1
Tv, = Z ajTv—j
j=1

(detT)(vi Ao Avp) =Ty A...ANTv, =0

since v,, contains v; for all ¢ and v; A v; = 0. |

(2)

det(T-S)(er A...Nep)=(T-S)ex N...Nep) =T(Ser A... A Seyp)
=TS(e1) A...ANTS(ep)
=T((detS)es A ... ANey)
= (det S)T(e1 A ... ANey)
= (det S)(detT)(e1 A ... Aey)
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Corollary. Consider T,S € L(V), T - S =1. Then detT det S = 1.

Lemma. Consider A, B € F™"

(1) (Laplace Expansion). det(A) = Y7 (—1)"*7a;;M;;, where M;; is the determinant of the

submatrix obtained from taking out row ¢ and column j.

(2) Suppose A = [Av; ... Av,] € F*™ and B = [Av; ... Av; ...Av; ... Auv,]. Then
det(B) = —det(A).

(3) A=[Avy ... Av; ...Av; ... Av,]. Then det(A4) = 0.

(4) Suppose B has the same columns of A, but the ith column of B is MAv; + pAvg. Then
det(B) = Adet(A).

(5) B = P~LAP for some invertible matrix P. Then det(B) = det(A).

We now consider determinants on complex vector spaces. Suppose V is a complex vector space and
TeL(V).

Proposition. det(T) = []j_, A;, A;s eigenvalues counted with multiplicities.

Proof.

Remark. we could use induction.

There exists a basis B such that M (T, B) is upper triangular.

Ty ANTvg A ... NTv, = A\v1 A ()\21}2@1’1} — 1) A\ ()\3’03 + byvg + bl’Ul) = ()\1)\2 L. )\n)’Ul VANPIAN Un)

Proposition. det(T' — AI) = p(\) is the characteristic polynomial of T'.

Definition. A permutationi 7 : {1,...,n} — {1,...,n} is bijection. The set of all permutations of
{1,...,n} is denoted by S,,.
Definition. Sign : S,, — {—1,1} defined as follows:

Sign(r) — +1 the natural order has been changed for an even number of times
& "] —1 the natural order has been changed for an odd number of times

Lemma. 7,0 € Sign.
(1) Sign(o - 7) = Sign(o) - Sign(7).
(2) 7o = I implies that Sign(o) = Sign(7).

Corollary. det(A") = det(A).

Corollary. If A has two identical rows, then det(A) = 0.

Corollary. det(A(1),., A7), Ar(n),.) = Sign(7) det(A).
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Lemma. Isometry S € £(V) implies that | det S| = 1.

Proof.

SS*=8"S=1
det(S) det(S*) =1
|det S| =1

81



28 Lecture : End Credits
28.1 Volume

We define volume intuitively (with Euclidean Geometry intuition) with a unit hypercube having
volume 1 and the hypercube with side length a having volume a™.

Theorem. Consider @ C R™, and AQ = {Ax | z € Q}. Then

volume(AS) = | det A|volume(2)

We first know that isometry preserves volume since | det S| = 1 for isometry S.
Proof 1 (Gram-Schmidt Process).

olume(AS2
Lemma. If Q; CR", volume(21) # 0, then |det A| = M
volume(€2;)
We notice that the volume of the figure spanned by v1,...,v, is
loallloz |- vz ]
Now recall that we can do the @) R-decomposition of A:
(vl
| | | | vy ||
v ... V| = |w Up,
| | | | '
0 o |

det(A) = det(Q) - det(R)
Now since |det Q| = 1,
|det A| = | det R| = volume(solid spanned by v1,...,v,)
the result follows? [ |

Proof 2 (Spectral Theorem,).
Recall the polar decomposition

A=S5VAtA
Thus
volume(A) = volume(SV A*AQ) = volume(B)

Let wq,...,w, be an orthonormal eigenbasis for v A*A. Pick Q to be the solid spanned by wy,...,w,
and let the Aq,..., A, be the corresponding eigenvalues.

volume(Q2) =1

VAtAQ

is the solid spanned by Ajwq, ..., Ayw,. Then

volume(ASQ)

| = ;
volume H Ai = volume (%)

i=1

= [ = det VATA = | det A

Remark. | didn't completely follow for the above section (I came pretty late trying to find a parking
spot) so the notes potentially might not make sense :eyes:. | may update them in the future. | also
missed a board :eyes: so I'll probably study this off the textbook.
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28.2 Trace

Consider dimV < oco.

Proposition. Forallp e V'andv eV, ®: V' @V — L(V) with p@v = (V = V,w — ¢(w)v) is
an isomorphism.

Remark.
LV)«~V @V = F

with V' ® V' — T being defined by ¢ ® v — ©(v), the map from L(V') to ¢(v) is the trace map.

Proof.
dim(V' @ V) = dim(V')dim V = (dim V))? = dim £(V)
Consider v, ...,v, a basis of V and ¢1,...,me, a dual basis of V'. Then {varphi; ® v;} is a basis of
VieV.
0
M((I)(Spi@)vj)’{vlw“avn}): 1
0

where the 1 is in the ith column and jth row.
Exercise: prove that its injective/surjcetive.
Proof that the map from L(V') to p(v) is the trace. Consider A = [ai;]i1<i j<n-

‘I’(Z aijp; @vi) = A
0,J

ev(® 1 (A)) = ev(z a;jp; ;) = Zaijéij = Za” = trace A
ij i i=1

28.3 Cayley-Hamilton

Theorem. Consider A, an n x n matrix. The characteristic polynomial f satisfies

Fa(\) = det(M — A)

and fA(A) = 0.
Proof.
Consider the special case
0 Cap T
1 0 —a1
1 —as
0 —Q0p—2
i I —an-_1]

Using the problem from PSet 10,
Aleq + an_lA"_lel +...4ape1 =0
The minimal polynomial for A and e; is

"+ ap_12"  + ..+ ag
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- o T
-1 A a1 A
- ~1
det(A — A) = det ' 42 feplce ) et
A Qp—2 _)\1
i -1 A+ Ap—1 |

Claim: det(A] — A) = A" +a, 1 \"" ' +... +ap.
We prove this via induction. Using Laplace,

det( A — A) = XA P 4 an N2+ day) + (1) ag (1)t

and the middle parentheses follows from the induction hypothesis.

ay

az

Gp—2
A + an-1

d

In particular, f4(A)e; = 0. We now want to reduce to this special caes. We want to prove that for

allv €V, fa(A)v =0. Let W be the smallest invariant subspace of V' containing v.

Claim: W = span(v, Av,..., Akv,...) = span(v, Av,..., A" 1y where m is the smallest positive
integer such that v, Av, ..., A™v are linearly dependent. In particular, v,..., A™ v is a basis of W.
Since v, Av, ..., A™v are linearly dependent,
A"y = —ap_ 1 A" o — L —agu

Apply A™ to both sides with n > 0. For all k > n, we can write A¥v as a linear combination of

Ak=1y. ..., v. We induct on k — n to conclude that A¥v is a linear combination of A™ tv, ..., v.
Now: _ -
0 —ap
1 0 —a1
A|W _ 1 —as9 - B
0 —Qm—2
L I —apm—]
Using our special case, det(Al — B) = A\ + a,, 1 A" 1+ ...+ ao.
Claim: The matrix of A with respect to a basis of V extending {v, ..., A" 1o} is

o

B x M- B *
det(AI—A):det()\I—[O *]):det{ 0 AI—*]

= det(A — B) det(A — *)

Since f,4 is independent of basis,

Remark. Notice that
A B

det [O C

] =det AdetC

This comes from the following:
A€1 =aj1e1+...+apn1€n

Ae, = aipe1 + ...+ anpnen
det A= Aey A\ ... A Ae,

- ¥

{i1,.e0sin }={1,...,n}

= Zsign of (i1,...

Qi 10552+« Qi €4y N ... €

n

L €n)Aiy1 -« - Qi = det At =det A
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fBN)[fa(A)
with | meaning divides and fp(A)v = 0 implies that fa(A)v =0 = s(A4)fp(4).
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29 Precept : Post-Credits Scene

Remark. The last class . . .. A very nostalgic/indescribable feeling.

29.1 Determinants

Definition (Determinant). Consider an n x n matrix A with the form:

A11 N Aln
A=
Anl Ann
Then
det A = > (sign (m1,...,mp))Apy 1o Ay

(m1,...,mn)Eperm(n)

The determinant detects whether a matrix is invertible. Specifically, A is invertible if and only if
det A # 0.
We consider some cases. In the one dimensional case,

[a]

is invertible if and only if a # 0. In the two dimensional case,

a b
c d

is invertible if and only if ad — be # 0.
One application of determinants is finding inverses.

a b

Theorem. If A = [c } then

d
1 d —b

Al = ——
ad — bc {—C a]

There are multiple proofs but ehre we will do the one by Cayley-Hamilton:
Proof.

Remark. In general, the characteristic polynomial is
2" — (trace A)z" "1 4. 4+ (=1)"det A
The characteristic polynomial is 22 — (a + d)z + (ad — be), so by the Cayley-Hamilton theorem,
A% —(a+d)A + (ad —bc) =0

Since A is invertible,
A—(a+d)I+ (ad—bc)A™ =0

solving for the inverse we get the desired result. ]

We now wish to consider larger matrices. The formula for det A has |perm (n)| = n! terms. For the
3 by 3 case, this is managable:
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Example. Consider the matrix

A A Agg
Agr Axy Agg
Az Agzy  Asg

A trick we can use is to write the determinant is to with the first two columns again, and all the
permutations show up as diagonals with diagonals decreasing from left to right being positive and
diagonals going from right to left being negative:

A A Az | A A
Ag1 Asny Axz | Asr Ao
Az1 Asy Azz | As1 Aszg

we get Sarmr's rule:
det A = Aj1 AggAgs + A1aAssAsy + A13 A1 Aso

7A13A22A31 - A11A23A32 - A12A21A33

Example. We now try to find the determinant:

det

O N = Ot O
O O Wk O
R Ot W =
OO OO
= O N~ N

Notice that the fourth column only has a 2 that is non zero, so all nonzero terms in the determinant
must contain the 2

0 01 0 2
5 4 3 2 1
det |11 3 5 0 7
2 0 4 0 6
0 0 4 0 4

Looking at the uncolored cells, only 3 is nonzero in its column, so all terms in the determinant must
contain it:

0 01 0 2
5 4 3 2 1
det |1 3 5 0 7
2 0 4 06
0 0 4 0 4

Again, the two in the first column is the only nonzero element so it must be in the determinant

0 0 0 2
5 4 3 2 1

det (I 3 5 0 7
2 0 4 0 6
0 0 4 0

This means that the determinant is just
sign(4, 3,5,2,1)72 + sign(4,3,1,2,5)48 = 72 — 48 = 24

In other words, if there are a lot of Os in a matrix, this formula is useful, but otherwise its not very
efficient.

We now discuss the cofactor expansion method of finding the determinant of an n x n matrix. Let

M;; = det(the (n — 1) x (n — 1) matrix formed by omitting the ith row and jth column of A)
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Then we get the cofactor expansion along the jth column:
n
det A = Z Aij(,]_)l‘W]M'ij
i=1
and the cofactor expansion along the ith row:
n
det A = Z Aij (—1)l+] ]\/[zg
j=1

We can also find the determinant using column,/row reduction.
Consider an n x n matrix A.

Step 1. Do column/row operations on A to get a simpler matrix B, keeping track of s the number of
row/column swaps and ki, ..., k, what you divide the columns and rows by (r is the rank).

Step 2. det A = (—1)%k; ...k, det B.

Example.
2 2 % 1 1 1 1 1 1
A=1]1 3 2| — |1 3 2| > |0 2 1| =8B
2 25 2 2 5 0 0 3
Then det A = (—1)Y -2 - det B = 12 since detb = 1-2- 3 (since it is upper-triangular).
Example. Consider
2 00 O
1 2 0 0
A= -1 0 2 O
0 0 1 -1

Note that the characteristic polynomial of A is det(z] — A) = det(zI — AT). Thus, the characteristic
polynomial is (z — 2)3(z + 1).

Example. Consider

-1 0 1
A=1-3 0 1
-4 0 3

We would like to find the Jordan form. First, we find the eigenvalues. We can use the characteristic
polynomial to do this. Notice that

z+1 0 -1
det(zI —A)=det | 3 =z -1
4 0 z—3
We do expansion along the second column. We get:
. z+1 -1
= zdet [ 4 L 3}

=2((z+1)(2—3) +4) = 2(* - 22— 3+4) = 2(2> — 22+ 1) = 2(z — 1)?

thus the eigenalues are 0 and 1.

Remark. Expansion is best when we are trying to find the characteristic polynomial because
we don't want to have to do weird things like dividing by z.
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